February 16, 2010

Incentives in Hedge Funds

Hitoshi Matsushima

Faculty of Economics, University of Tokyo

February 4, 2010

Hedge Fund as Delegated Portfolio Management

Investor (Unsophisticated) 1 Unit of Fund, No Withdrawal

Manager

M Units of Personal Fund: Manage Investor's and Personal Funds

'Separate Management' or 'Equity Stake'

Weak Regulation, Low Transparency

Generate Alpha

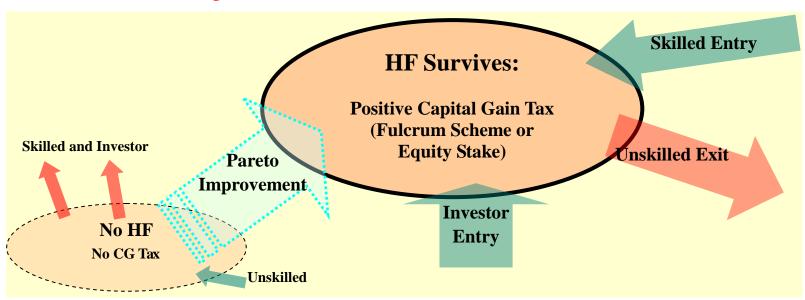
Manager $\begin{cases} \textbf{Skilled Type} & \textbf{Select Alpha (Action)} \ \ a \in [0,\infty) \ \ \textbf{with Non-Pecuniary Cost} \ \ C(a) \\ \textbf{Unskilled Type} & \textbf{Alpha 0} \end{cases}$

Incentive Problem

Hidden Type Hidden Activity

Investor Cannot Identify whether Manager is skilled or not Investor Cannot Observe Manager's Activity

Q: Can We Solve Incentive Problem?

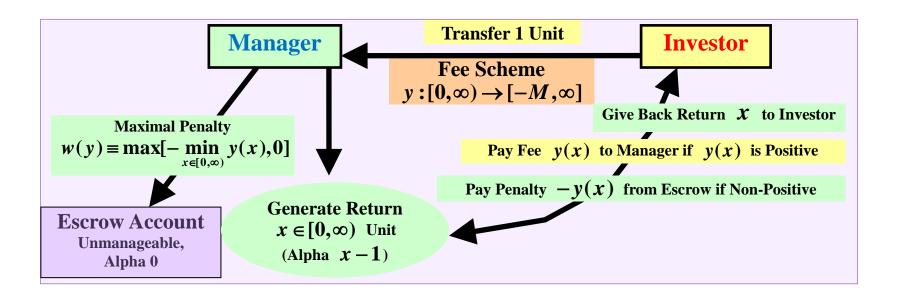


A: Yes, but We Need Capital Gain Tax!

Manager's Incentive Fee Scheme

$$y:[0,\infty) \to [-M,\infty], y(x) \in [-M,\infty)$$

Return-Contingency, Penalty, Escrow for Solvency



Real Fee Scheme

'2:20' Scheme

Asymmetry, No Penalty, Convexity, High-Powered

$$y(x) = 0.2x + 0.02$$

Criticisms (Warren Buffet): '2:20' Makes Manager More Risk-Taking by Side Contracting with Third Party. We Should Change '2:20' Scheme to

'Fulcrum' Scheme

Symmetric, Positive Penalty, Linear, Low-Powered

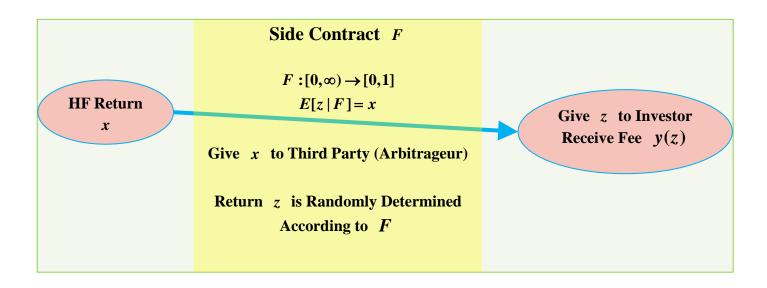
$$y(x) = k(x-1)$$

Side Contracting: Performance Mimicry

Randomize Return

Cumulative Distribution $F:[0,\infty) \to [0,1]$

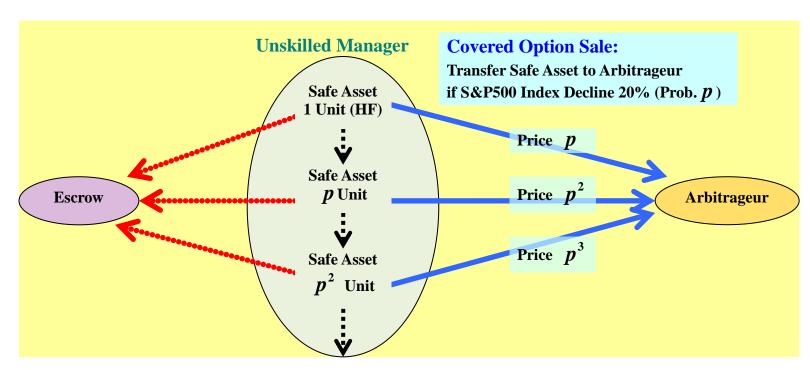
$$E[z | F] = x$$



Example (Lo (2001))

Capital Decimation Partners (CDP)

Unskilled Can Generate Alpha
$$\frac{p}{1-p} > 0$$
 with Prob. $1-p$



Previous Works: Hedge Fund Never Survives

Foster + Young (08/09) With No CG Tax, No Scheme Can Solve Incentive Problem

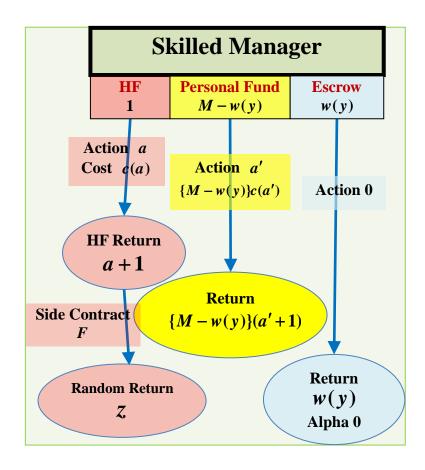
Media: FT (18/3/08), NYT (3/8/08)

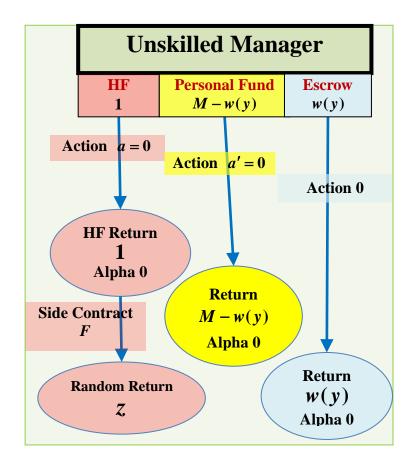
"HF Never Survives. We Need More Transparency!"

Results of This Paper

- CG Tax Functions
 - With No CG Tax, We Cannot Solve Incentive Problem (a la Foster + Young)
 - With Positive CGT Rate t > 0, We Can Solve Incentive Problem
- Constrained Optimal Scheme
 - Fulcrum After Taxation: Low-Powered
- Income Tax on Fee Functions
 - Income Tax Rate Should be Greater than CG Tax Rate, $\tau > t$
 - Manager Selects Constrained Optimal Scheme Voluntarily
- Equity Stake Functions
 - We Can Solve Incentive Problem without Fulcrum

Assumption: Separate Management





Incentive Problem: Five Constraints

- **Skilled Entry**
- **2** Unskilled Exit
- **3** Investor Entry
- **Welfare Improvement**
- **Skilled Non-mimicry: Skilled Needs No Third-Party Side Contract**

Skilled Entry: $V(y,t,\tau) \ge \overline{V}(t)$

Outside Opportunity

Manage Entire Personal Fund M

Payoff

$$\overline{V}(t) \equiv M\{(1-t)\tilde{a}(1-t) - c(\tilde{a}(1-t))\}$$

CG Tax $tM\tilde{a}(1-t)$

Skilled

HF Industry

Put w(y) in Escrow, Unmanageable

Payoff

$$V(y,\tau,t) = \min[(1-\tau)y(a^*(y,\tau)+1), y(a^*(y,\tau)+1)] - c(a^*(y,\tau)) + \{M - w(y)\}\{(1-t)\tilde{a}(1-t) - c(\tilde{a}(1-t))\}$$

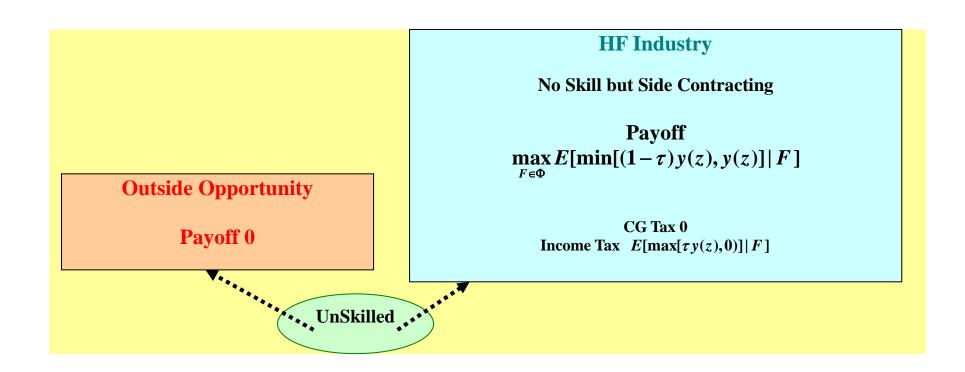
CG Tax
$$t\{M-w(y)\}\tilde{a}(1-t)$$

Income Tax $\max[\tau y(a^*(y,\tau)+1),0]$

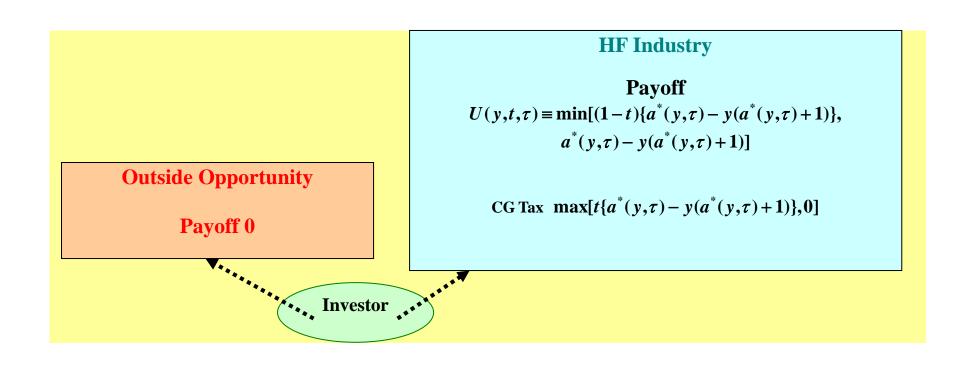
 $\tilde{a}(1-t)$ Maximize (1-t)a-c(a)

 $a^*(y,\tau)$ Maximize $(1-\tau)y(a+1)-c(a)$

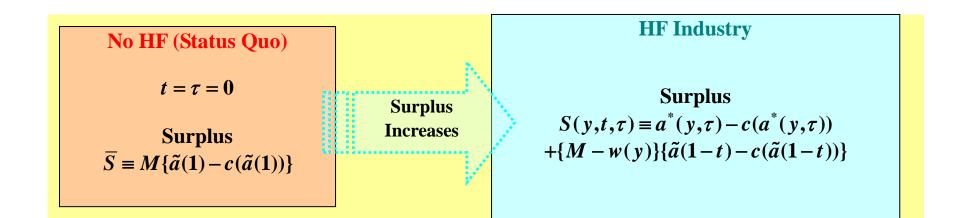
Unskilled Exit: $\max_{F \in \Phi} E[\min[(1-\tau)y(z), y(z)]|F] \le 0$



Investor Entry: $U(y,t,\tau) \ge 0$, i.e., $a^*(y,\tau) \ge y(a^*(y,\tau)+1)$



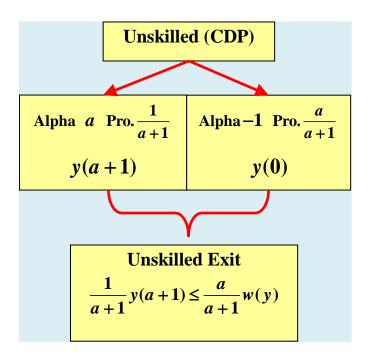
Welfare Improvement: $S(y,t,\tau) > \overline{S}$

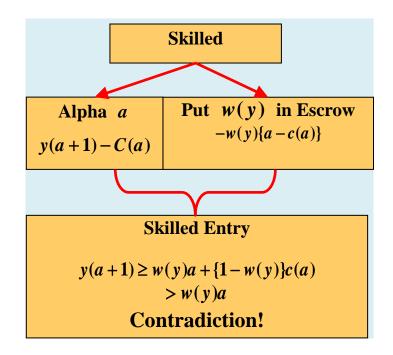


No Capital Gain Tax: Impossibility

Theorem: Suppose CGT Rate t = 0. Then, There Exists No Fee Scheme that Satisfies Skilled Entry, Unskilled Exit, and Welfare Improvement.

Outline of Proof: Assume a > 0 is only available, y(0) = -w(y)

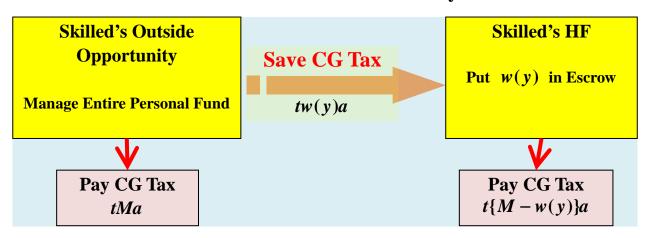




Positive Capital Gain Tax: Possibility

Theorem: There exist Tax Rates $(t,\tau) \in [0,1]^2$ and Fee Scheme $y \in Y^*(\tau)$ that satisfy All Constraints.

Outline of Proof: Assume a > 0 is only available



"Larger Fund + Less Active" is Better Than "Smaller Fund + More Active"

Constrained Optimization: (y^*,t^*,τ^*)

(1) Fulcrum Scheme after Taxation y(x) = x - 1 for all $x \in [1, \infty)$

$$y(x) = (1-\tau)(x-1)$$
 for all $x \in [0,1)$

(2) Skilled Entry Binding $V(y,t,\tau) = \overline{V}(t)$

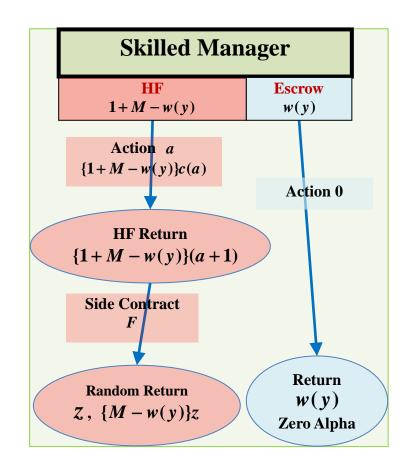
We Specify $(y,t,\tau) = (y^*,t^*,\tau^*)$ As Maximizing Surplus $S(y,t,\tau)$ Subject to (1) and (2)

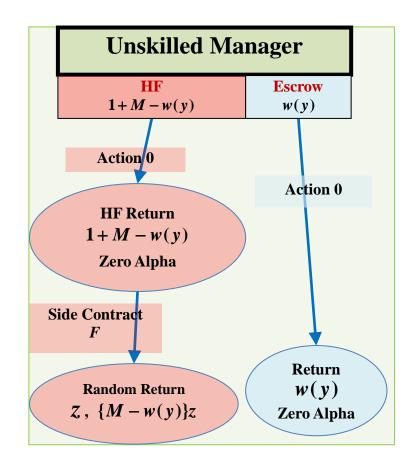
Theorem: (y^*, t^*, τ^*) Satisfies All Constraints. There exists No (y, t, τ) that Satisfies All Constraints and $S(y, t, \tau) > S(y^*, t^*, \tau^*)$.

Constrained Optimization: Properties

- Manager is Willing to Select y^* Voluntarily: y^* is the Only Scheme that Satisfies Skilled Entry, Unskilled Exit, Investor Entry, and Skilled Non-mimicry.
- Manager Prefers to Put Personal Fund in Escrow as Large as Possible, Distorting Welfare.
- Income Tax Rate τ^* is Greater than CG Tax Rate t^* : High Income Tax Rate

Another Assumption: Equity Stake





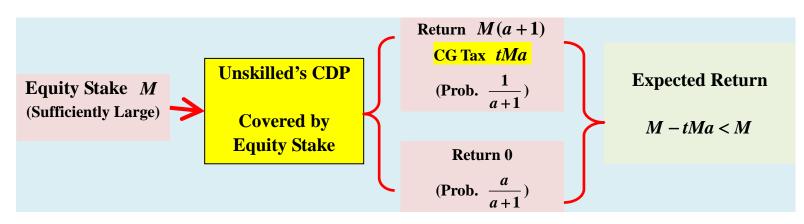
We Don't Need Penalty, But CG Tax and Big Stake

Theorem: Suppose CGT Rate t = 0. Then, There Exists No Fee Scheme that Satisfies Skilled Entry, Unskilled Exit, and Welfare Improvement.

Additional Assumption: a > 0 is only available, $\tau = 0$

Theorem: For Sufficiently Large Personal Fund M, There exist (t,y) that Levy No Penalty but Satisfy All Constraints.

Outline of Proof: CDP Must be Covered by Not only Investor's Fund But also Personal Fund



Further Comments

Investor's Optimization

- Investor Prefers higher-Powered and More Penalty than Constrained Optimal Scheme.
- By Transferring Total Tax Revenue to Investor, Government Can Incentivize Investor to Select Constrained Optimal Scheme Voluntarily.
- Investor's Payoff May be Greater than Manager's Payoff per Unit: Manager May Fold HF Business.

Entry Cost

Entry Cost Functions, if, and Only if, It is Non-Pecuniary!