Implementation and mind control

Hitoshi Matsushima

University of Tokyo, Economics Department

July 8, 2009

Nash implementation

- Uninformed principal (planner) delegates decision to informed agents.
- Adverse Selection, Mechanism design, unique NE

Standard approach

• Agent's incentive is based on material interest

cf. Glazer and Rosenthal (92): Salience

• Mechanism design: Punish and Reward

Maskin (77/99), Abreu + Matsushima (92)

A behavioral approach

 Agents' incentive is based, not only on material interest, but also, on social psychology (obedience, conformity)

Ash (55), Milgram (74), Zimbardo (77)

psychological cost of lying

٠

 $W_i(s_i) = 0$ if strategy s_i implies honest $W_i(s_i) > 0$ otherwise

Tiny cost functions in implementation

Matsushima (02, 08a, 08b), Dutta + Sen (09), Kartik + Tercieux (09)

Eichmann test

Prison experiments

Ash experiment

Present paper

Psychological cost depend on 'expectation'

٠

ex. Psychological game Geanakoplos et al (89)

Charness et al (06)

$$W_i(s_i, s_{-i})$$

- S_i Agent i's strategy
- S_{-i} Agent i's expectation on others' strategies

Expectation-based obedience (EBO)

Psychological cost is greater if he expects others have kept honest. Psychological cost is smaller if he expects others have lied.

- Principal designs mechanism that makes it easy to control agents' mind.
 - \Rightarrow Agents expect others to keep honest for a short while.
 - \Rightarrow They want to keep honest longer.
 - \Rightarrow They expect others to keep honest longer.
 - $\Rightarrow \cdot \cdot \cdot \Rightarrow$ 'Honest ever' becomes unique NE

How to design mechanism?

$$A, (M, g, r), M \equiv \underset{i \in N}{\times} M_i, g : M \to A, r \in [0, 1), s_i : [0, \infty) \to M$$

- **Continuous time horizon** $[0,\infty)$
- Agents make announcements at initial time 0, $s_i(0) \in M_i$.
- Agents can change announcements any time, many times.
- Principal determines terminal time \tilde{t} randomly with hazard rate r.
- Principal follows final announcements.
- Principal prohibits mutual monitoring and communication.
- No 'punish and reward' scheme is used.

Principal prohibits mutual monitoring and communication

 \Rightarrow Strategy is path-independent, $s_i : [0, \infty) \rightarrow M_i$

cf. Montgomery Bus Boycott in 1955

Utility (expectation-based)

Utility satisfies EBO!

Expectation-based obedience (EBO): Definition

$m_i^* \in M_i, \ m^* = (m_i^*)_{i=1}^n$	Truthful message
$s_i^* \in S_i$	Truthful strategy, $s_i^*(t) = m_i^*$ for all $t \ge 0$
$t_i(s_i) \in [0,\infty)$	First time for agent i to tell a lie
	$s_i(t_i(s_i)) \neq m_i^*, \ s_i(\tilde{t}) = m_i^* $ for all $\tilde{t} < t_i(s_i)$
$S_{i,t} \in S_i$	Agent <i>i</i> keeps honest before <i>t</i> , follows s_i afterwards
	$s_{i,t}(\tilde{t}) = m_i^*$ for all $\tilde{t} \in [0,t)$
	$s_{i,t}(\tilde{t}) = s_i(\tilde{t})$ for all $\tilde{t} \ge t$

For every $i \in N$, $j \in N \setminus \{i\}$, and $s \in S \setminus \{s^*\}$, $[t_i(s_i) \le t_j(s_j) \le t_h(s_h) \text{ for all } h \in N \setminus \{i, j\}]$ $\left[\lim_{\varepsilon \downarrow 0} \frac{W_i(s) - W_i(s / s_{i,t_j(s_j) + \varepsilon})}{\varepsilon} > r \max_{(a,a') \in A^2} |v_i(a) - v_i(a')| \exp(-rt_j(s_j))\right]$ Lie after someone else has lied saves psychological cost. ٠ Marginal decrease in psychological cost is greater than • marginal decrease in intrinsic (material) utility.

Incentive compatibility in terms of intrinsic utility (IC)

$$v_i(g(m^*)) \ge v_i(g(m^* / m_i))$$

for all $i \in N$ and all $m_i \in M_i$

Main Theorem

With $n \ge 3$, EBO, and IC, truthful strategy profile s^* is unique Nash equilibrium

Tail-chasing competition: difference from AM

AM mechanism controls material interest by fining first deviant explicitly. Mechanism in present paper control mind to dislike being first deviant.

Psychological cost can be negligible compared to material payoff

$$\max_{(s,s')\in S^2} |W_i(s) - W_i(s')| \approx 0 \text{ for all } i \in N$$