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Abstract

We extend our results for complete information to general Bayesian environ-
ments. A social choice function now maps from a finite set of profiles of signals or
types to lotteries over alternatives. Self-selection is an obvious necessary condition

for virtual implementation under any solution concept. We derive an additional
necessary condition which we term measurability. Measurability requires that the
social choice function be measurable with respect to a particular partition of each
player’s signal space. These partitions are derived from players ’state-dependent
utility functions and their conditional probability distributions over other players’
types. The condition will often be trivially satisfied; the relevant players’ parti-
tions will be the finest possible, each element of each player’s partition containing
a single signal. Under weak domain restrictions we show that any social choice
function which satisfies self-selections and measurability is virtually_implementable
in iteratively undominated strategies. This result is essentially complete, and as
permissive as one might hope. It applies to an arbitrary number of players and in
particular embraces the two player complete information case.



1 Introduction

This paper considers implementation in Bayesian environments with two or more players.
It extends our results for complete information in Abreu and Matsushima (hereafter
AM) [1] to this more general setting. In terms of motivation and general background
the complete and incomplete information problems have much in common. To avoid
repetition, this introduction, and more generally the paper, is written to be read in
conjunction with our companion piece on complete information.

The setting is the following. There are a collection of alternatives and a group of
players, each of whom receives a private signal. The set of possible signals or types is
finite!. Every player has a distribution over players’ signals, conditional on the signal
she receives. (In the special case of complete information each player receives the same
signal). Players’ preferences over lotteries are, in general, determined by the entire
profile of players’ signals. A social choice function maps from the space of possible signal
profiles to a (fixed) set of possible outcomes, indicating the signal-contingent outcome
the principal or planner wishes to impose. An essential feature of our formulation is that
the set of outcomes is taken to be the space of (simple) lotteries over some (arbitrary)
set of pure alternatives. We will assume that players’ preferences over lotteries satisfy
the expected utility hypothesis.

A game form or mechanism consists of a message space for each player and an
outcome function which specifies an outcome for each message profile. A social choice
function is implementable via the iterative elimination of strictly dominated strategies
if there exists a game form for which the iterative elimination of strictly dominated
strategies leads to a unique iteratively undominated strategy profile with the required
outcome for all (possible) signal profiles.

A social choice function satisfies self-selection if truthful reporting is a best response
given that other players report their signals truthfully. That is, truthfully reporting is a
Bayesian Nash equilibrium in the standard revelation mechanism in which players only
report their signals and the outcome function is simply the social choice function itself.
Self-selection is a necessary condition for implementation (virtual or exact) using any
solution concept. We derive a second necessary condition which is new to the literature.
We term this condition measurability. It requires that the social choice function be
measurable with respect to a particular partition os each player’s signal space. The
relevant partitions are determined by players’ state-dependent utility functions, and
their conditional distributions over other players’ signals. Measurability will, of course,
be trivially satisfied if the partition is the finest possible, each element of the partition
being a singleton. This is in fact the case in complete information environments, and
we indicate plausible conditions under which this will be true in general incomplete

See section 5 in AM [1] for a discussion of this assumption.



information environments also. Significantly, measurability is a necessary condition
for implementation (virtual and exact) in Bayesian Nash equilibrium also, when the
implementing game form satisfies a natural regularity condition. Hence in situations in
which the measurability condition is non-trivial it cannot be evaded by weakening the
solution concept to Bayesian Nash equilibrium.

Under weak domain restrictions on preferences we show that any social choice func-
tion which satisfies self-selection and measurability is virtually implementable via the
iterative elimination of strictly dominated strategies. This characterization is essentially
complete. Given our domain restrictions, self-selection and measurability are necessary
and sufficient for virtual implementation. Since these conditions are also necessary for
implementation in Bayesian Nash equilibrium it shows that (modulo virtualness) there is
no advantage in weakening the solution concept beyond the iterative removal of strictly
dominated strategies.

We are aware of no characterizations involving iterative dominance arguments in
general Bayesian environments.? There is however a fairly large body of work on
Bayesian-Nash implementation in incomplete information settings starting with Postle-
waite and Schmeidler [17]. Subsequent contributions include Palfrey and Srivastava [15],
[16], Mookherjee and Reichelstein [12], Jackson [6], Matsushima [9], [11], and others. For
further references see the survey by Palfrey [14]. This literature shows that self-selection
and Bayesian version of the monotonicity condition are necessary for Bayesian Nash
implementation. As in the complete information case there is no presumption that
monotonicity is a non-trivial condition in general.>** All the drawbacks of the Nash lit-
erature carry over to the Bayesian Nash case. These include the use of integer games
and the arbitrary exclusion of mixed strategies. See Jackson [7] and our companion
paper for a critique. In contrast our results are permissive, obtained for a much weaker
solution concept, and use finite mechanisms. The unique iteratively undominated profile
is a strict Bayesian Nash equilibrium. Moreover it is a unique equilibrium. Furthermore,
our construction applies to an arbitrary number of players, and consequently provides
a unified treatment of the two and more than two player case. The two player case
has not been considered in the Bayesian implementation literature and has needed new
methods of proof in the complete information case. This paper is organized as follows:

2See however Matsushima [10)].

3See Matsushima [11], who argues that Bayesian monotonicity is trivial when side payment is per-
mitted.

Palfrey and Srivastava [16] dispense with this condition for the special case of private values by
considering implementation in undominated Bayesian Nash equilibrium. Their mechanisms,are, how-
ever, suspect in that they involve the elimination of dominated strategies in unbounded mechanisms.
See Jackson [7]. In such mechanisms a strategy x may be dominated even though there exists no un-
dominated strategy y which dominates x. Such perversities appear to play a key role in obtaining the
desired results.



Section 2 develops notations, Section 3 develops a special case, Section 4 discusses mea-
surability and Section 5 presents the theorem. Section 6 shows how the theorem applies
to complete information and the two player case. Section 7 concludes.

2 Preliminaries

Let N = (1,...,n) denote the set of individuals (agents, players), and S; be the finite set
of types or signals of individual i. A profile of signal defines a state s = (sq, ..., ;) and
s = [ [,cn S: denotes the set of possible states. Let p; (s_;| s;) denote agent i’s conditional
probability that other agents receive the profile of signals s_; when she receives the signal
s;. As in our companion paper, A denotes the set of simple lotteries over some arbitrary
set of pure alternatives. A pair of lotteries a,b € A is € — closed if the distance between
them is at most ¢ in the usual Euclidean metric ) _.|a(7) — b(7)| < € where I is the
support of lotteries a and b and a(7) is the probability of pure alternative 7 in the
simple lottery a. Player i’s state dependent von Neumann-Morgensten utility function
is denoted u; : A x S — R. It is linear in its first argument. Note that u; in general
depends on all players’ signals.

A social choice function =z : S — A maps from states to lotteries. We will write
=X+ (1=XNzif z(s) = Ay(s) + (1 —A)z(s) for all s € S. The social choice
functions x and y are e — closed if for all s € S, the lotteries z (s) and y (s) are € — closed.
Let

Ui(w,si) = Y ui(w(s),s)pi(smilsi)

s_iES_q',

denote individual i’s conditional expected utility from a social choice function x
when she receives the signal s;. A mechanism or a game form G is an (n+1) —
tuple (M, ..., M,,g), where M; is a message space for agent i, M = M; X ... X M,,
and g : M — A is an outcome function. Our constructions only use finite M;’s. Let
o; + S; — M, denote a (pure) strategy for agent i and X; her set of pure strategies. Let

vi(Gooys) = Y uilg(o(s)),s)pi (54l s)

S_;ES_;

denote agent ¢’s conditional expected utility from a mechanism G under the strategy
profile o, when she receives the signal s;. Note that a player’s strategy specifies a message
for each of her possible types.

Fix a game form G = (M, g) arbitrarily. Let H; be a subset of ¥;. A strategy o; € H;
is strictly dominated for player ¢ with respect to H = [] jen Hj if there exist 0; € H;
and s; € S; such that for every o; € H;,

v; (G,0/0,s) > v; (G,0,s;)




Note that from the point of view of a player ¢ who receives a signal s; the domination
is strict with respect to all possible strategies of other players. Let @; (H) denote the set
of all undominated strategies for agent ¢ with respect to H. Let Q; (H) = [[,cy Qi(H).
Let QY(X) = %, QF = [[;en QF where QF(Z) = Q;(Q*'(X)). For simplicity, we write
QF for QF (%), etc.

Let Q* denote the intersection of {Q’C =0,1,.. } A strategy profile o € X is
iteratively undominated if o € Q*. Since X is finite, there exists & such that Q* = Q*for
all k£ > k. The mechanism G = (M, g) exactly implements a social choice function z in
iteratively undominated strategies if and only if Q* is a singleton and g(c*(s)) = z(s)
for all s € S, where Q* = {o*}.

As in our earlier paper, the order of elimination of strictly dominated strategies
is irrelevant. If o* is the unique strategy which survives the iterative elimination of
strictly dominated pure strategies, it will also be the unique strategy which survives the
iterative elimination of strictly dominated (pure and) mixed strategies. Furthermore, o
is a unique mixed Bayesian Nash equilibrium, and is a strict equilibrium for each type
of every player.

For every ¢ € N, every s; € S; and every s; € S;, let

Vi(x,s;,8;) = Z u; (x (s/8)),8)pi (54| $:)

S_iES_;

denote the expected utility of the direct mechanism (.S, z) for player ¢ conditional on s;
when she announces s; and the other players make truthful announcements. Note that

Vi(x,si,8) =U(x,s;)

Definition 1 A social choice function x satisfies self-selection if for every i € N, every
s; € S; and every s; € S;\ {s;},

Ui ($7Si) 2 ‘/2 (‘Tﬂgi?‘g;) .

A social choice function x satisfies strict self-selection if these inequalities strictly
hold.

Self-selection means that truth-telling is a Bayesian Nash equilibrium in the direct
mechanism (S, x). Self-selection is a well-known (and immediate) necessary condition
for implementation in Bayesian Nash equilibrium, or in any refinement of Bayesian Nash
equilibrium.



3 A Special Case

Before proceeding to our general characterization we consider a special case which we
hope will serve as an easy introduction to the incomplete information setting. In this
section, we assume:

(1) That small side-payments are possible and that these affect utility additively. Specif-
ically, we denote by t; € [—¢, ] the side-payment to payer i and suppose that her
total utility is u;, (a, s) + ;.

2) Private values: Player i’s preferences over lotteries depend only on her own type.
Y y y
Since w; is independent of s ;, we simply write u; (a, s;) instead of u; (a, s;, s_;).

(3) That for every i € N, and s; € S;, there exist a,a’ € A such that

wi (a,8;) > u; (d,8;).

That is, for each type of player i, we exclude the possibility of universal indifference
across lotteries.

(4) That distinct types of player i have distinct orderings over lotteries.

Assumption (4) is not innocuous. In particular it excludes the complete information
case. A player’s signal represents what she knows, and in the complete information
setting this is the entire profile of players’ preferences. Hence two distinct signals for
player ¢ may represent differences in other players’ preference orderings and not her own.
See Section 4 for a further discussion of this point.

The preceding assumptions (specifically (2) — (4)) imply that for every i € N there
exists a function f; : S; — A such that for every s; € S; and every s, € S;\ {s;},

ui (fi (8i),81) > wi (fi(s7),5:) -

This straightforward result corresponds to the Lemma in AM [1], and may be proved
analogously. We may think of f; as a social choice function which is independent of s_;.
It gives player i’s ”dictatorial” choice within the set {a : a = f; (s;) forsomes; € S;}. By
construction this choice varies with s;.

We now construct a mechanism as follows. Every player ¢ makes (K + 1) simulta-
neous announcements, each of which is of her own signal M; = M? x M} x ... x M} =
S; % ...x S;. Recall that S; is finite so that this construction will yield a finite mechanism.
Denote

h h
m; = (md,...m)e M;, m!e M|

m = (m° ...,m") e M mh=(mhey € M" = XNMz'h
i



Given a social choice function x, for any profile of player messages m, the lottery
chosen is

g(m) = =3 fimd) + (% D filmi) + (1—e =) x(mh>)

where ¢ is small and strictly positive. Equivalently,

K
g(m) = =3 filmd) + = 3" /)
iEN h=1
where
) = £ 3 )+ (1 =)
and a = 18725

Note that given x that satisfies self-selection, x’ satisfies strict self-selection. This is
because of the addition of the f; terms. Of course, for small ¢, 2’ is ”close” to x.

In the above mechanism, player i’s zero-th announcement affects the outcome with
probability =. With this probability the outcome is f:(m?), and this lottery depends only
on player i’s zero-th announcement. On the other hand, player i’s h-th announcement
(h > 1) affects the outcome with probability 1= via the 2/(m/, m” ;) which does depend
on other players’ h-th announcements.

In addition to this lottery players receive small fines according to the following rules.
The first deviant from her own zero-th announcement is fined 7. That is, player i is

fined t; : M — R where

t; (m) = —n if player 7 is the first deviant,
i.e., for some h, m? # m? and m"
m? for all A’ < h.

t;(m)=0  otherwise

!

Choose 7 sufficiently small, such that for every i € N,

% (wi (fi (84),8i) —u; (fi (8),8:)) >mnforall s; € S; and all s; € S;\ {s;}

Note that 7 is smaller than the ”direct” expected utility loss from a zero-th message
0
m; # Si.



Let o be an iteratively undominated strategy profile. Recall that o; : S; — M.
Denote strategies for players by

o; = (00, , K), O’?ISiHMZ»h

i 0;
o = (0°..,0%), o": 85— M"

ceey

Since m{ affects player #’s utility only through f; and #;, it follows directly from the
definition of n that if o; is iteratively undominated, then
O'? (Sz) = S;.

We will now show that if for every ¢ € N, every iteratively undominated strategy
profile o; and every s; € S;, ol (s;) = s; for all h € {0, ..., k}, then

o1 (s;) = s; for all i € N and all s; € S;.

7

The following inductive step completes the argument: for any (small) ¢ > 0, the
mechanism yields a unique iteratively undominated profile o with o¥ (s;) = s; for all
s; € 5;,allt € N and all k=0,..., K. The resultant income is

(1—5—52)x(s)+z<£+§> fi(si)

and there are no fines.
For the inductive step to go through we must choose K sufficiently large, such that
for every i € N, every s; € S; and every s’ € S,

1—¢

K (wi (2" (5'/si), 81) — i (2" (s),5:)) -

n >

Then the fine 7 is larger than =2 times the maximal ”direct” utility gain from changing

K
the outcome.
suppose that ot (s;) # s; for some i € N and some s; € S;. Define 7; such that

i

ot =clfor h#£k+1, 77 (s) = ot (s;) for all s, € S;\ {s;}
k41

and 7; " (si) = si
Under the inductive hypothesis above if o%*! (s;) = s; for all j € N\ {i} and all
s; € S, then by strict self-selection o; yields higher payoff than o; even if player i is the
first to deviate given (7;,0_;). On the other hand, if for some 57 € N\ {i}, 0, (s;) # s;
for all s; € S;, then (by the choice of K above) 7;, by saving the fine 7, yields a higher
payoff than ;. Thus 7; dominates o; for player ¢ of type s;. In fact this argument is not

8



complete in that some types of player y may announce o’ (s;) # s;, while others make
truthful announcements. This possibility is allowed for in the detailed arguments we
present below. Assumptions (2) and (4) are the non-innocuous simplifying assumptions
used here. These assumptions are relaxed in the next two sections which also provide
formal proofs.

4 Measurability

This section introduces the measurability condition, discusses issues of computation,
establishes that measurability is necessary for implementation in Bayesian Nash equilib-
rium also, and finally provides a simple sufficient condition under which measurability
is satisfied by any social choice function.

4.1 The condition

As indicated in the Introduction, the measurability condition requires that the social
choice function be measurable with respect to a particular partition of each player’s
signal space. In order to clarify exactly what this condition means it is useful to start
with a little notation.

Denote by W; a partition of S;, where 1), is a generic element of ¥; and ~, (s;) is the
element of ¥; which includes s;. Let ¥ = X;cnyV; and ¢ = X;ent);.

Definition 2 A social choice function = is measurable with respect to W if for every
1€ N, every s; € S; and s, € S;,

z(s) =z (s/s;) for all s_; € S_; whenever v, (s;) =, (s))

(2

A social choice function x is strictly measurable with respect to V if for everyi € N,
every s; € S; and every s, € S;,

z(s) =x(s/s;) for all s_; € S_; if and only if v, (s;) = 7, (s})

Moreover, a social choice function x is measurable with respect to a social choice function
y if for any i € N and any s;, s, € S;,

z(s) =x(s/s;) forall s_; € S_; whenever y(s) =y(s/s;) foralls_; €S

Measurability of x with respect to ¥ implies that for any player ¢, x does not distin-
guish between any pair of signals in the same element of the partition ¥,.



Definition 3 A strateqy o; for player i is measurable with respect to V; if for every
s; € S; and every s; € S;,

0 (8;) = 0 (s;) whenever 7y, (s;) =, (s})

(2

A strategy profile o is measurable with respect to W if for every i € N, o; is measur-
able with respect to V;.

Consider player i, and Y, the set of social choice functions which depend only on
other players’ signals. For any signal s; player i receives, she can rank elements of Y in
terms of conditional expected utility. In any game form, and for any tuple of strategies
o_; of other players, a message m, by player i generates a social choice function in Y
(yi such that y; (s) = g (my,0-; (s—:))).

If the signals s; and s; generate the same posterior ordering over Y* then, in any
game form, player i’s optimal strategies when she is type s; are identical to her optimal
strategies when she is type s,. Player ¢ could not possibly have a strict incentive to send
a distinct message for each of these signals. Hence if = is implementable it must be that
x(8i,5-;) = x(s},s;) for all s_; € S_;. That is, z must be measurable with respect
to some partition of S; with s; and s, in the same cell of this partition. The partition
generated by posterior orderings over Y is the finest possible partition with respect
to which an implementable social choice function must be measurable. In general the
relevant partition might be coarser. This is because in distinguishing between any pair
of signals s; and s; we are using the richest possible set of social choice functions Y
which depends only on other players’ signals. The same analysis applied to players j # 4
may yield non-trivial partitions ¥; of the S;’s. Then in order to discriminate between
player i’s signals we may only use a set of social choice functions which are measurable
with respect to ¥ _;. Proceeding in this way we iteratively obtain coarser and coarser
partitions. As will become clear the procedure described below starts at the ”other end”
and iteratively yields finer and finer partitions.

For every i € N, s; € S;, s € S; and (n — 1)-tuple of partitions W_;, s; is equivalent
to s, with respect to W_; if for every x and every y which are measurable with respect
to {Sz} X \I/,i,

Ui (z,8:) > Ui (y, s:) if and onlt if U; (x, s;) > U; (y, s;) -

Let p, (si, ¥_;) be the set of all elements of S; equivalent to s; with respect to W_;,
and let

Ri (\I/,z) = {pz (Si, \If,z) 18 € SZ} .

We define an infinite sequence of n-tuples of partitions, {¥"}  Wh = ¥h x .. x Uh
in the following way. For every ¢ € N,

) ={S},

10



and recursively, for every : € N and every h = 1,2, ...,
U = RI(WLT).

Note that for every h = 0,1,..., ¥ is the same as, or finer than, ¥”. Since S; is
finite, there exists a positive integer L such that for every h > L, ¥" = W We denote
U = pl,

We will argue that a necessary condition for a social choice function to be virtually
implementable is that it be measurable with respect to U*.

Definition 4 A social choice function satisfies the measurability condition if it is mea-
surable with respect to U*.

Consider a game form G = (M;, ..., M,,; g) which exactly implements a social choice
function y in iteratively strictly undominated strategies and let Q¥, QF, the sets of
iteratively undominated strategies at the k-th round of iterative removal, etcetera, be
defined as in Section 2.

Consider an arbitrary constant strategy profile o [0] € Q° (that is, o [0] is measurable
with respect to Xy {S;}). By the definition of W', it follows that for every i € N, there
exists o; [1] € 3; which is a best response to o [0] and is measurable with respect to W',
Hence, o; [1] is not strictly dominated for player i with respect to ¥, that is, o; [0] € Q.

Fix k = 2,3, ... arbitrarily, and suppose that there exists a strategy profile o [k — 1] €
Q"' which is measurable with respect to W*~!. Then, it is easy to see that for every
i € N, there exists o; [k] € X; which is a best response to o [k — 1] and is measurable
with respect to W¥. Since o; [k] is a best response it is not strictly dominated for player
1 with respect to ¥; x Q’:l. As we are eliminating strictly dominated strategies, QF =
Q (3 x Q’Zl). Hence for all k = 0,1, ..., there exists o [k] € Q* which is measurable
with respect to UF.

Let 0* be the unique iteratively undominated strategy profile in the implementing
game form G. Then the preceding argument implies that ¢* is measurable with respect
to U*. It follows that y = g - 0* is measurable with respect to U* also, i.e., satisfies the
measurability condition.

Now suppose that {y™}>_, is a sequence of social choice functions such that y™
is exactly implementable, and (%)—close to z. Clearly there exists m such that for
all m =m,m + 1, ..., x is measurable with respect to y™ (and vice-versa). Thus if = is
virtually implementable there exists y which is measurable with respect to z and exactly
implementable. Hence we have proved that:

Proposition 1. If a social choice function is virtually implementable in iteratively
undominated strategies, then it satisfies the measurability condition.

11



4.2 Computing V*

There are simple sufficient conditions under which no computation is necessary: The
partition is simply the finest possible partition ¥;, each element of ¥ containing only
a single element. See Section 4.4. When computation is required and the set of pure
alternatives I' is finite, U* may be determined via a finite procedure as follows. Define

X" = {z: z(s) isadegenerate lottery foralls € S} .

If T is finite so also is X7.

The following definition of equivalence of signals is implied by and implies the defi-
nition given earlier: s; is equivalent to s, with respect to W_; if there exist  and 5 > 0
such that for any z € X* which is measurable with respect to {S;} x ¥_;,

Ui (z,8;) = a+ 0U; (z,5,) .

We need only consider social choice functions which map to pure outcomes and check
the condition above.

4.3 Measurability and Bayesian Nash implementation

We argue here that measurability is a necessary condition for implementation in Bayesian
Nash equilibrium. When implementing game forms satisfying a natural regularity con-
dition. Thus measurability is a weak condition; requiring implementation in iteratively
undominated strategies does not entail requirements beyond these needed for Bayesian
implementation.

For any mechanism G = (M, g), let BN (G) be the set of Bayesian Nash equilibria
of G. A social choice function x is implementable in Bayesian Nash equilibrium by the
game form G if BN (G) # (0 and for all ¢ € BN (G),

g(o(s)) =x(s) forall se S.

For every i € N and every partition ¥, let ¥; (¥;) denote the set of strategies
of player i which are measurable with respect to W;. The profile 0 € X;en%; (¥;) is
a pseudo-Bayesian Nash equilibrium with respect to ¥ in G if for all ¢ € N and all
Y, € V;, there exists some s; € 1, such that

vi (G,0,8:) > v; (G,0/0%,s;) for all o € 3;.

We will say that G is regular if for any ¥, a pseudo-Bayesian Nash equilibrium exists.
Regularity is a minimal requirement, and will be satisfied, for instance, under any of the

12



standard conditions used to establish the existence of a Bayesian Nash equilibrium via
a fixed point argument.’

Proposition 2. If a social choice function is virtually implementable in Bayesian
Nash equilibrium by a reqular game form, then it satisfies the measurability condition.

Proof. As in the earlier proof, it suffices to establish the result for exactly imple-
mentable social choice functions. Let G = (M, g) exactly implement a social choice
function x, and let 0 € x;en2; (¥F) be a pseudo-Bayesian Nash equilibrium with re-
spect to W*. If m; = o, (s;) is a best response for player ¢ with signal s; then m; is
also a best response for any s] € & (s;, U7), where R' (V) = {p; (t;, ¥*,) : t; € S;},
but R’ (\I/’jz) = V. It follows that any pseudo-equilibrium o which is measurable with
respect to U* is in fact a regular equilibrium. Since x = ¢ - o, x must satisfy the
measurability condition. m

4.4 A simple sufficient condition

We now present a simple sufficient condition under which measurability will be auto-
matically satisfied. This condition is based on the possibility of small side payments
and based on the idea of ”scoring rules” (see Good [5] and Winkler [19]). Recall that
the finest possible of partitions is denoted by U,. Let U = X,;cn0;. Clearly any social
choice function is measurable with respect to ¥ so that measurability with respect to ¥
is trivially satisfied.

Let t; € [—¢, €] denote the side payment to player i and suppose that her total utility
is u; (a, s) +t;. Let

P (v,

Si): Z pi (il si)

S_i€P_;

and suppose that for every i € N, every s; € S;, every s, € S;\ {s;}, there exists ¢*; €
U, such that p; (¢*;] s;) # pi (¢*;] s}). Construct a transfer rule ¢; : S; x ¥*;, — [—¢, ]
such that

~

ti (si,97;) = —a (1 —pi (¥7, Sz’))2 -« Z pi (V4 si),

1/)_716‘1’*71'\{7/)*—11}

where « is a positive real number small enough to satisfy

—e <t; (si,9";) <eforalls; €S;and all *, € U,

>Most of the mechanisms that have been used in the Nash and Bayesian Nash literature are not
regular. We take this to be additional evidence of the unsatisfactory nature of these mechanisms.

13



Note that for every s, € S; and every s, € S;\ {si},

> (E(sewry) =t (shety)) (v

v_evt \ vz, }

Si) > 0.

Now consider the ”extended” social choice functions which map to A x [—&,&]|" so
that the social outcome consists of a lottery in A and a transfer payment. Let U** be the
analogue of ¥* for ”"extended” social choice functions. It follows from the construction
of transfer rule E above that U** = 0.

5 The Theorem

Our main theorem asserts that self-selection and measurability are necessary and suf-
ficient for implementation in iteratively undominated strategies. The necessity of self-
selection and measurability were argued earlier and it only remains to establish suffi-
ciency. The latter is true under two weak assumptions which are satisfied automatically
if arbitrarily small fines may be levied. Before proceeding to details we provide a brief
initial discussion premissed on the availability of small fines.

Definition 5 A social choice function x satisfies set self-selection for player i with respect to
U if it is measurable with respect to ¥ and

Ui (z,8)) > Vi (z,si,8;) forall s; € S; and s; € S;\ {7; (si)}-

A social choice function satisfies strict set self-selection for player i with respect to
W if it satisfies set self-selection for player i with respect to W and the above inequalities
strictly hold.

The strategy of proof is as follows. We first show that there exists a social choice
function £ which is strictly measurable with respect to U*, and is moreover exactly
implementable in iteratively undominated strategies (this step is discussed below). This
function is implementable using a mechanism in which players announce elements of their
partition W7. Given this social choice function x, we can virtually implement any social
choice function 2/ which satisfies strict set self-selection for all players and measurable
with respect to z, or equivalently measurable with respect to ¥U*, by mimicking the
argument of Section 3 replacing announcements of signals by announcements of cells of
the partition Uj: if a social choice function z satisfies the measurability condition, we
will define a function 2t : ¥* — A by

x" (1) = x (s) wenever ) =" (s),
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where 7} (s;) is the element of W that includes s;, and 7v* (s) = (v (8:));cn- Let

M, = U x U x .. x U
| K
_ 5t (0 +(mh
g(m) = ex (m)+(1—€)KhE_1x (m™).

In addition small fines are levied as before. The logic of the argument is now similar
to the one presented earlier.

Note that for any social choice function x which satisfies the measurability condition
and set self-selection for all players with respect to U* there exists a nearby social choice
function 2’ which in addition satisfies strict set self-selection for all players with respect
to U*. This social choice function is

nT+ (1 —n)x.

Thus for virtual implementation the distinction between weak and strict self-selection
is unimportant.

How do we prove the existence of 27 Recall the ”dictatorial” function f; of Section 3.
By an analogous argument, there exists a social choice function x} which satisfies strict
set self-selection for player 7 with respect to ¥} x W°.. Hence the social choice function
% D oien x} is strictly measurable with respect to U!, and is implemented via (one round
of) elimination of strictly dominated strategies.

Can we go a step further? By exactly the same logic there exists a social choice
function z7 which is measurable with respect to ¥? x W!, and satisfies strict set self-

(2

selection for player 7. The for small enough e the social choice function

1 2
€+e? (%ZCE}—F%Z@G?)

i€EN ieEN

is implementable in iteratively strictly undominated strategies, and is strictly measurable
with respect to U2. We now need two rounds of iterative removal.

Proceeding in this way we inductively obtain the desired z. Now to details and
formal proofs.

Assumption 1. For every i € N, every s; € S;, every h € (0,...,L) and every
eV i (@/)_l- si) > 0, then there exists a € A and o' € A such that

Z (ui (5,a) — ;i (a',5)) pi (5| 5:) > 0, where p; (w_z' Si) = Z pi (sl 8i) -

3_7;61/)71- 3_7',61/)71-
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It is clear that this assumption is weak; it rules out indifference (in terms of condi-
tional expected utility) across all lotteries. It is satisfied trivially if small transfers of
private goods are permitted.

Lemma 1. For every i € N and h = 1,..., L, there exists a social choice function
zh which satisfies strict set self-selection for player i with respect to Uk x U1 where
L is the positive integer introduced in Section 4 such that W = U*,

Proof. Fix: € N and h =1, ..., L arbitrarily. Let Y;h’1 be the set of all social choice
functions which are measurable with respect to {S;} x ¥~'. Then s; and s} induce
different preference orderings over Y;"* if and only if " (s;) # v? (s}). By Assumption
1, neither of these preference orderings involves complete indifference. Hence, for all
¥, € Ul and ¢} € UM\ {4}, there exist social choice functions z and y which are
measurable with respect to {S;} x ¥"7! such that

Ui(z,5) > Us(y,s:) if 7] (si) = 1, and
Let Z! be a finite subset of Y;" ! such that for all 1; € ¥? and ¢} € U\ {¢),}, there
exist x € Z and y € Z! with the above properties. Let J = |Zlh . For all ¢, € U" and

J Ed{l, ey J} let x;/) be social choice functions which satisfy {:c;/) cjedl, ., J}} =20,
an

Ui(:v;{”,si) > Ui(x;{)jrl,si) forall j =1,2,...,J — 1if 42 (s;) = o,

Consider the social choice function z! defined by

J
2l (s) = ol (s) i 4l (s0) = s
j=1

where the a;’s are strictly positive, strictly decreasing in j, and sum to one. Then z! is

measurable with respect to U x W"~! and satisfies strict set self-selection for player i. m

Lemma 2. There exists a social choice function which is exactly implementable in
iteratively undominated strategies and is strictly measurable with respect to W*.
Proof. Define a social choice function = by

z(s) :aZZH‘xf(s),

i€N h=1

h

where the social choice functions x; are as in Lemma 1, and

1
ne+e+..+¢ek)’

o =
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For small enough € > 0, 7 is strictly measurable with respect to ¥*.¢ We will show
that z is exactly implementable.
We define a mechanism G = (M, g) by

M; =V forall i € N,

and

g=a"

We can choose a positive real number 1 > 0 such that for every i € N, every s; € S;,
every s € S; and every h € {1,..., L}, if s\ ¢ 4 (s;), then

Ul(xf7 Si) - ‘/Z(va Si, S;) > 1.
For every x € X, define

Fi(w) = max {us (2 (), 8) = wi 2 (5/5) )}

Choose ¢ small enough such that for every i € N and every h € {1, ..., L},

n > Z Z e " Fy(ah).

JEN k=h+1

Let 0; and 0 be strategies for agent i in G.

Let P (h) be the statement: ”if 6 is iteratively undominated, then for every i € N
and every s; € S;, 0; (s;) is a subset of 7 (s;).” Recall that 7? (s;) = S; for all s, € S,.
Then P (0) holds trivially. We will show that for all h =1,...,L, P(h —1) = P (h).

Suppose that P (h — 1) and consider an iteratively undominated strategy 6; for player
i. Fix s; € S; arbitrarily. Suppose 0, (s;) is a subset of v (s;), and ¢, (s;) is a subset of
711 (s;) and also a subset of ¥" (s!) for some s, € S;\{y" (s;)}. Then

L
ui(G,0,5) —vi(G,0/0,5) > ' (Ui(azf,si) — V(! 54,8%) — Z Z 5k_hFi(:c§)>

JEN k=h+1
> "o (Ui(al, s;) — Vi(zl, si, ) — n)
> 0.

6Suppose that z is strictly measurable with respect to some partition ¥ and y is measurable with
respect to some coarser partition W/. Then (1 — A) x + Ay need not be strictly measurable with respec
t t tition W’. Then (1 — A A d not be strictl ble with t

to ¥ for arbitrary A, but will be for small enough A.
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This means that if §; is iteratively undominated, 6; (s;) is a subset of ¥? (s;), and
therefore, P (h) must hold.
Hence 6 = ~*. Finally recall that

g(y(s)=7(s) foralls€S. =

Assumption 2. For every ¢ € N and every 1 € V*, there exist a(i,1)) € A and
a (i, ) € A such that for every s € 1, if p; (s—|si), then

w; (@ (i,v),s) —u; (a(i,¥),s) >0,

and
uj (a(i,v),s) —uj(a(i,),s) >0forall j € N\{i}.

Assumption 2 corresponds to the single assumption used in our earlier paper on
complete information. Like Assumption 1, Assumption 2 is trivially satisfied if strictly
positive (though possibly, arbitrarily small) transfers of private goods are possible. It
requires that for every player ¢ and every signal profile, there exists a pair of lotteries
which are strictly ranked for player i and for which other players have the (weakly)
opposite ranking. In addition this pair of lotteries must be chosen measurably with
respect to U*.

Theorem. A social choice function is virtually implementable in iteratively undom-
wnated strategies if and only if it satisfies self-selection and is measurable with respect to
v,

Proof. As noted above self-selection is obviously necessary. By Proposition 1, so is
measurability. Hence, it only remains to establish the ’if” part of the theorem.

By Lemma 2 there exists a social choice function z which is strictly measurable
with respect to ¥* and exactly implementable in iteratively undominated strategies.
Let G = (M,g) be the implementing game form constructed in the proof of Lemma 2,
where M; = U? for all i € N, g = 7", and +* is the unique iteratively undominated
strategy profile of G. Since ~v* is a strict Bayesian Nash equilibrium in é, T satisfies
strict self-selection for all players with respect to W*. Let

y(s)=1—-a)z(s)+ax(s).

Since z satisfies self-selection and = satisfies strict self-selection for all players with
respect to W*, yT satisfies strict self-selection for all players with respect to ¥* also,
for any a € (0,1]. We will assume without loss of generality that z™ satisfies strict
self-selection for all players with respect to U* since there exist arbitrarily close social
choice functions which do.

18



The game form G = (M, g) we construct here is similar to the one for complete
information. Specifically,

M; = M) x M} x ... x MF =VUF x ... x U}

for an integer K to be defined.
Define the function £ : N x M — A as follows:

€(i,m) = a(i,m°) if there exists k € {1, ..., K} such that m/* # m},
and m" =m° forall h € {1,.... K — 1},
€(i,m) =a(i,m’) otherwise,

where @ and a are as in Assumption 2.
The outcome function g : M — A is

g(m) =cezt (m°) + %Z{(Lm) +(1-e-¢% %Zx*(mh).

*

Define o} = (v}, ...,7;), and let 0* = (07),.y- We show that for small enough ¢, o*
is the unique iteratively undominated strategy profile in the game form G.

We first argue that if o is iteratively undominated in G = (M, g), then o° = v*. For
every i € N, every o and every o/, if 0" = 0" for all h € {1, ..., K}, then

Vi (G7 0-/0-;'7 Si) — U (G7 ag, Si) = £ (Ui(év 0-0/0-;07 Si) - Ui(év UO: Sz))

+% S (wi(€(0/0}(s),8) =i (€0 (5)),5)) pi (5-i] 51)

S_;ES_; jJEN

~ ~ 922
> € (vi(G, a/o?, s;) —vi(G, 0, sz)> — iEi.
n

For the mechanism C~¥, let (@f),e N, h =1,2 ..., be a sequence of sets of iteratively
undominated strategies as defined in Section 3, and let (Q")icn/, h = 1,2,..., be the
corresponding sequence for G. It follows from definitions that there exists a positive
number 7 > 0 such that for every i € N, h € {0,1,...} and §; € QF, if 6, is dominated
with respect to @h, then there exists s; € S; and ¢, € @? such that for all 6_; € @h

ui(G, 0/, 5:) — vi(G,0,5,) > 1.
For every 7 € N, let

= s, { S teom o

jseN
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Choose £ > 0 such that
n > 2ek; foralli € N, (%)
and assume below that 0 < ¢ < €. Then,
vi(G,0/0}, 8:) —vi(G,0,8;) > € (vi(é, o/, s;) —vi(G, 0", s;) — 17) :

It follows that if o is an element of @', then ¢ must be an element of @1, and
recursively, for every h € {2, ...}, if o is an element of Q", then ¢° must be an element

of @h. Consequently, if o is iteratively undominated in G, then o® = ~*.
For every ¢« € N and every s € S, define

Bi(s) = wi(a(i,y"(s)),s) —ui(a(i,v"(s)),s),
Di(s) = max{ui(x(s),s) —ui(x(s/s7),8) +ui(x(s), 8) —wi(z(s/s) )} -
By Assumption 2, for every i € N and every s € .S,

B, (s) > 0if p; (s—i| s:) > 0.

Hence, there exists a positive integer K such that for every i € N and every s € S,

2
K%B,» (s) > (1—e—¢€*) Dy (s) if p; (s_i| s;) > 0. (xx)
Let P (h) be the statement: ”if ¢ is iteratively undominated in G, then for every
i1 €N,
ol =~fforall g€ {0,....h}.

We have established P (0). We now show that forallh =1,..., K, P(h—1) = P (h).
Suppose P (h — 1), and consider an iteratively undominated strategy o; for player i.

Then, by P (h — 1),
ol =~f forallq € {0,....h —1}.

We need to show that o = v} also. Suppose not, and let o (s;) = v; (s}) # 7 (s:)
for some s, € S;. Let o} be the strategy for player ¢ such that

o) = of for all ¢ # h, and o} (s;) = 7} (i) .

Consider any iteratively undominated strategy profile o_; for other players. Then
o] = forall g € {0,....,h — 1} and all j € N\ {i}. Let

Sty ={seSi:ol(s2) #7550}
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Then, by (xx),

vi(G,o/0%,s;) —vi(G,0o,8) > Z % (1—e—¢%) (wi(z(s),s) —ui(z(s/s}),s)) pi (s_i s:)

s_¢S*,

+ > % (1 —e—¢?) [ui(a* (0" (s) /77 (1)), 5)
s_i¢S*,

52

(ot () + B 9) (5110
1—e—&") (Ui (z,8) — Vi(z,$i,5;)

> 0.

The extra subtlety here, which does not appear in the complete information case, is
that some types of other players (this is the set S*;) may misrepresent m! while others
do not.

This inequality implies that o; is not iteratively undominated in GG, a contradiction.
Hence, ol (s;) = ~i(s;), o = ~*, and the unique iteratively undominated strategy
profile is o* = (v*, ..., ¥%).

Since

52

g(o" () = (1—e=e)a" (v () + e (7" (5) + — > oali,(s),

€N

and ¢ can be taken to be arbitrarily small, the proof is complete. m

6 Complete information and the two-player case

Our incomplete information framework is very general and in particular incorporates
the special case of complete information. Furthermore out result is independent of the
number of players and in particular covers the two player case, which traditionally has
been treated separately (or not at all) with equilibrium-based implementation literature.
We spell out here how our theorem specializes to the complete information case with
two or more players.

In general, some signals s = (sq, ..., $,) € S may occur with zero probability. This is,
for instance, the case in the complete information setting where all players receive the
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same signal — that is, all probability mass lies on the "diagonal” of S (i.e., s € S such
that s; = s; for all i € N).

The self-selection condition is expressed in terms of social choice functions which are
defined for all s € S. Of course, from the point of view of final realized equilibrium
outcomes, any pair of social choice functions which agree on S, the support of S, are
equivalent. Starting from a social choice function defined on S we would require that the
self-selection condition be satisfied for some extension of the function to S, the Cartesian
product of the individual signal space S;.

In our paper on complete information AM [1], it was convenient to define the social
choice function on S, i.e., the diagonal of S. With three or more players such a social
choice function may be extended to S in a manner in which the self-selection condition
is automatically satisfied; the extension simply ignores a single player deviation from an
otherwise unanimous announcement.

In terms of the notation of this paper the complete information case may be described
as follows.

Si =5 forallie N,
pi(s—ilsi) =1 if s; =s; forall j € N\ {i}
pi (s_i| s;) =0 otherwise

Ul

={(s1,...,8n) €S : 8 = s foralli € N}

For any s; € S5;, let s; - e denote t € S for which t; = s; for all j € N. Each s; € 5;
corresponds to a preference profile, one for each player. Each S; may be partitioned into
subsets ¢, (s;) where each element of ¢, (s;) yields the same preferences over lotteries for
player i. Furthermore, for all s; € S;, {s;} = Njen {¢j (sz)}

We first argue that measurability is trivial in complete information environments. In
fact, this follows from our earlier paper (at least when there are three or more players)
which shows that any social choice function is virtually implementable in the complete
information case. Since measurability is a necessary condition, it follows that with
complete information any (three or more player) social choice function is measurable.
We sketch a direct argument below (which also covers the two-player case).

Specialized to the complete information case Assumption 1 amounts to ruling out
player types who are indifferent over all lotteries. As we show in AM [1] this implies
that there exists a function f; : S; — A such that for every s; € S;,

fi(si) = fi(sy) for all s; € ¢; (s),
and

ui (fi (s:),8) > i (fi(s),si) for all s & &, (si) .
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By definition,
‘I’? = {Sz} :
By considering constant social choice function z;, : S — A where
z (2) = fi (t;) forall z € S,
the reader may check that R (U°,) = {¢, (s;) : s; € S;} (for any w; ¢ ¢, (s;), consider
the pair of constant social choice functions z;, and z,, ). Hence
U, = {¢; (s:) : 55 € Si} .
Finally the second round of the iterative procedure yields
U2 =0, = {{s;} : 5; € Si},

the finest possible partition. Hence U = U2 and the iterative procedure terminates in
the second round. Let b; (¢, (s;)) and b; (¢, (s;)) satisfy

u;(b; (9; (si)) ,8i) > wi(b; (¢ (1)) 5 8i)-

The existence of such lotteries is guaranteed by Assumption 1 (non-indifference over
all lotteries). In distinguishing between any pair of signals w; and s; we may now

use social choice functions which are measurable with respect to {S;} x ¥!,. Define
gi: S — Aby

g9i(s) = gi (¢; (s0)) if ij (Sj) = (/5]- (s;) forall j € N,
(¢, (s;)) otherwise.

Let xf : S; — A be defined by
x; (s) = gi(ti,s_;) forall s € S.

Now to distinguish between w; and s; where w; # s; and w; € ¢, (s;), consider the
social choice functions 22 and 22,

Ui(3,, s0) = wibi (s:) , 83) > wilb; (5) , 80) = Ui, 84),

and conversely when the signal is w;.”

"We remark that since measurability is trivially satisfied in complete information environments
whereas not all social choice functions are monotonic in such environments, it is clear that the measur-
ability condition does not imply Bayesian monotonicity.
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Let us turn to the self-selection condition. As noted above this condition is satisfied
trivially when there are three or more players. Let T : S — A be a social choice
function as in the earlier paper on complete information. It may be extended to yield
an equivalent (on the support S of S) social choice function z : S — A which satisfies
self-selection as follows:

z(s) =7 (s;-e) if there exists a subset J of N such that
|J|>n—1,7€ Jand s;=s; forallieJ,
x(s)="b otherwise, where b is an arbitrary element of A.

This extension is not well defined if n < 3. Indeed in the two-player case, self-selection
is a non-trivial requirement, and is equivalent to a condition termed the intersection

property.

Definition 6 A two-person social choice function T : S — A satisfies the intersection
property if for every s; € Sy and sy € Sy there exists b € A such that

ur (T(sz-€),s2-€) > ui(b,s2-e),
and
uy (T(s1-€),s1-€) >up(b,s1-¢).

When this property is satisfied the set of lotteries which is (weakly) worse than
T (s; - e) for player i with preferences 7, (s;) has a non-empty intersection with the cor-
responding set for player j. For a social choice function T which satisfies the intersection
property and each s; € Sy and sy € Sy let b (s, o) satisfy the inequalities of Definition
6. Define an equivalent extended social choice function x : S — A by

x(81,82) =T (s1) if 51 = so,
x (81,82) = b(s1,82) 1if 51 # so.

Then x satisfies self-selection. It is also clear that T must satisfy the intersection
property if some extension of it satisfies self-selection. We remark that the existence
of a "holocaust” outcome is a crude sufficient condition for the intersection property to
hold.

It follows immediately from out theorem and the preceding discussion that in the
complete information case, any two-person social choice function which satisfies the
intersection property is virtually implementable in iteratively undominated strategies.

Abreu and Sen [2] showed that the intersection property is necessary (and sufficient)
for virtual implementation in Nash equilibrium. We note that the intersection property
is much weaker than the complex necessary and sufficient conditions for exact two-
person implementation in Nash equilibrium provided by Dutta and Sen [3] and Moore
and Repullo [13].
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7 Conclusion

A large literature following the Gibbard-Satterthwaite theorem has sought to character-
ize implementable social choice functions for a variety of concepts weaker than dominant
strategy implementation. Under general informational assumptions, and in the context
of virtual implementation and the iterative elimination of strictly dominated strategies
this paper provides a characterization which is essentially complete. We present two
necessary conditions, self-selection and measurability, which (under weak domain re-
strictions) are also sufficient. The former is obvious and well-known, and the latter
is introduced in the present paper. Measurability is frequently automatically satisfied.
Modulo measurability, our result is therefore as permissive as one could possibly expect,
and furthermore obtained for a solution concept which is even weaker than rationaliz-
ability.

We are aware of no characterizations involving non-equilibrium solution concepts in
general Bayesian environments. Earlier results for implementation in Bayesian Nash
equilibrium are limited by the stringency of the necessary condition (Bayesian mono-
tonicity), the restriction to three or more players, the (undesirable) equilibrium basis of
the solution concept, and above all by the unsatisfactory nature of the implementing
mechanisms.
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