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1. Introduction 

 

This paper investigates the allocation problem with incomplete information, with 

the assumptions of quasi-linearity, private values, and independent distributions, where 

each player has a type that is unknown to the other players and the central planner. Our 

framework is general enough to include combinatorial auctions3, multilateral trading4, 

and incentive auctions 5  in which each participant (player) brings heterogeneous 

commodities as his (or her) initial endowment to sell to the other participants and 

purchases other commodities at the same time. Our framework includes allocation 

problems in which both the central planner and the participants bring their respective 

commodities and sell them altogether. For example, broadcast television companies sell 

spectrum licenses to mobile phone companies, and the government sells substitute 

licenses to these broadcast television companies simultaneously. The purpose of this 

paper is to clarify the possibility of achieving efficient allocations without the central 

planner having a deficit in revenue. 

We introduce and compare the following two distinct collective decision 

procedures, both of which require a mechanism to satisfy efficiency and Bayesian 

incentive compatibility (BIC). The first collective decision procedure assumes that the 

central planner has the initiative in designing the mechanism at the ex-ante stage. At the 

interim stage, after observing his (or her) type, each player decides whether to 

participate in or exit from the procedure. Whenever he (or she) decides to exit from the 

procedure, he can consume his initial endowment by himself. The central planner needs 

to incentivize all players to participate in the procedure irrespective of their types, that is, 

the mechanism requires interim individual rationality (IIR) in the first collective 

decision procedure. 

 The second collective decision procedure assumes that the central planner transfers 

the initiative in designing the mechanism to the players at the ex-ante stage. The players 

commit themselves not to exit from the procedure irrespective of their types; the 

                                                  
3 See Rassenti, Bulfin, and Smith (1982), Kelso and Crawford (1982), and Ausubel and Milgrom (2002). 
See also Cramton et al. (2006). 
4 See Myerson and Satterthwaite (1983). 
5 See Milgrom (2007), Cramton (2011), Hazlett et al. (2012), and Milgrom et al. (2012). 
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mechanism does not require IIR. However, in the second collective decision procedure, 

we require the mechanism to satisfy the following stability notion against coalitional 

behavior for occupying the central planner’s endowment, namely marginal stability 

(MS). At the ex-ante stage, any largest proper coalition has the option to exclude the 

player who does not belong to this coalition from the allocation problem. MS requires a 

mechanism to incentivize any largest proper coalition not to exercise this option. 

 Following Makowski and Ostroy (1989) and Segal and Whinston (2010), we 

assume that there is an opt-out type in the set of possible types for each player, with 

which, the consumption of his initial endowment is valuable to the point that the 

efficient allocation assigns it to him irrespective of other players’ types. With the 

presence of such opt-out types, we show that there exists an efficient, BIC, and 

marginally stable mechanism that brings the central planner a non-negative revenue, if 

and only if, any efficient, BIC, and interim individual rational mechanism never brings 

the central planner a non-negative revenue. Hence, it follows that the first collective 

decision procedure functions to make the achievement of efficiency consistent with the 

central planner’s non-negative revenue, if and only if, the second collective decision 

procedure does not do so. 

In the context of combinatorial auctions, when the central planner brings the entire 

set of commodities to be sold, each player’s outside opportunity could be low enough to 

be consistent with IIR, because he has nothing to consume by exiting. However, in the 

second collective decision procedure, the players are willing to build a coalition to 

exclude its non-member from accessing the central planner’s endowment. The 

requirement of MS is restrictive in this context. 

In the context of multilateral trading, where the players bring the entire set of 

commodities to be sold, each player’s outside opportunity could be too high to be 

consistent with IIR. However, in the second collective decision procedure, the players 

hesitate to build any coalition, because they dislike losing the chance to trade with its 

non-member. The requirement of MS is not restrictive in this context. 

This paper is in line with Segal and Whinston (2010), which assumed the presence 

of opt-out types, and then showed a necessary condition under which the first collective 

decision procedure functions to make the achievement of efficiency consistent with the 

central planner’s non-negative revenue. The present paper shows a not only necessary 
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but also sufficient condition under which the first collective decision procedure 

functions to make the achievement of efficiency consistent with the central planner’s 

non-negative revenue, by introducing the second collective decision procedure and 

comparing the two. The present paper also allows the central planner to bring 

commodities to sell alongside the participants’ endowments. 

 The organization of this paper is as follows. Section 2 describes a basic model of 

allocation problems. Section 3 explains combinatorial allocations, introduces opt-out 

types, and demonstrates the characterization result for the first collective decision 

procedure. Section 4 defines the second collective decision procedure, defines MS, and 

shows the main result of this paper. Section 5 discusses the impact of replacing MS with 

the standard notion of stability. Section 6 concludes. 
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2. The Basic Model 

 

 This paper investigates an allocation problem with incomplete information, where 

A  denotes the set of all allocations, },...,2,1{ nN   denotes the set of all players, with 

a A  and 2n  . Each player Ni  has a type i i   that is unknown to the other 

players and the central planner, where i  denotes the set of possible types of player i . 

Let 



Ni
i

, 


 
}/{iNj

ji , ( )i i N    , and \{ }( )i j j N i i     . The 

types in i  are distributed independently across players according to a probability 

measure in full support of  . Each player si  payoff function satisfies quasi-linearity, 

risk-neutrality, and private values, that is, ( , )i i iv a t  , where Rti   denotes the 

monetary payment from player i  to the central planner, and :i iv A A   is his 

valuation function over allocations. 

A direct mechanism, or in short, a mechanism, is defined by ( , )g x , where 

:g A  denotes an allocation rule, : nx R   denotes a payment rule, with 

( )i i Nx x   and :ix R . According to ( , )g x , when each player i N  announces 

i i  , the allocation ( )g A   is selected and each player i  makes a monetary 

payment of ( )ix R   to the central planner, where ( ) ( ( )) n
i i Nx x R    . 

We assume that the allocation rule g  is efficient in the sense that for every  , 

the allocation ( )g A   maximizes the sum of all players’ valuations: 

   ( ( ), ) max ( , )i i i i
a A

i N i N

v g v a  


 

  . 

We focus on mechanisms that incentivize players to make honest announcements as 

Bayesian Nash equilibrium behavior, i.e., satisfies BIC. 

 

Bayesian Incentive Compatibility (BIC): A mechanism ( , )g x  satisfies BIC if for 

every Ni , ii  , and i i , 

   [ ( ( ), ) ( ) | ] [ ( ( , ), ) ( , ) | ]i i i i i i i i i i i iE v g x E v g x              , 
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where [ | ]iE   denotes the interim expectation operator in terms of i i   

conditional on i . 

 

Let X  denote the set of all payment rules x  such that ( , )g x  satisfies BIC. Let 

X̂ X  denote the set of all payment rules x X  such that there exist :i ih R   

for each i N  satisfying 

   
\{ }

( ) ( ( ), ) ( )i j j i i
j N i

x v g h   


    for all  . 

For each ˆx X , the mechanism ( , )g x  is a so-called Groves mechanism6. A Groves 

mechanism satisfies incentive compatibility in dominant strategy in the sense that for 

every Ni ,  , and i i , 

   ( ( ), ) ( ) ( ( , ), ) ( , )i i i i i i i i i iv g x v g x            . 

This paper assumes payoff equivalence in the sense that for every x X , there 

exists ˆx̂ X  that induces the same interim expected payments: for every i N , 

   ˆ[ ( ) | ] [ ( ) | ]i i i iE x E x     for all i i  . 

The literature for mechanism design with side payments has shown sufficient conditions 

that guarantee payoff equivalence. See Williams (1999), Krishna and Maenner (2001), 

Krishna and Perry (2000), Milgrom and Segal (2002), and Bikhchandani et al. (2006), 

for instance. 

 The revenue for the central planner is defined as the sum of all players’ payments, 

that is, ( )i
i N

x 

 . We assume that the central planner is risk-averse; the central planner 

prefers constant revenue across type profiles. Following Arrow (1979), d’Aspremont 

and Gérard-Varet (1979), and Krishna and Perry (2000), we can show that for every 

x X , there exists x X  that induces the same interim expected payoffs and a 

constant revenue that is the same as the ex-ante expected revenue induced by ( , )g x . 

 

Lemma 1: For every x X , there exists x X  such that 

                                                  
6 See Groves (1973), Green and Laffont (1977), and Holmstrom (1979). 
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   [ ( ) | ] [ ( ) | ]i i i iE x E x      for all i N  and i i  , 

and 

   ( ) [ ( )]i i
i N i N

x E x 
 

    for all  , 

where [ ]E   denotes the expectation operator in terms of  . 

 

Proof: See the Appendix. 

 

From Lemma 1, without loss of generality, we can confine our attention to payment 

rules x X  that are decomposed into ( ) n
i i Nr r R   and ( )i i Ny y X  , where 

  ( ) ( )i i ix y r    for all i N  and all  , 

and y  satisfies balanced budgets in that 

   ( ) 0i
i N

y 


  for all  . 

Note that i
i N

r

  corresponds to the central planner’s revenue in the ex-post term, i.e., 

   ( )i i
i N i N

r x 
 

   for all  . 

We will write ( , )r y  and ( , ( , ))g r y  instead of x  and ( , )g x , respectively. 

 For every Ni   and i i  , let ( )i iU R   denote player 'i s  outside 

opportunity. Let ( )N i i NU U   denote the profile of outside opportunity functions, 

where :iU R  for each Ni  . In order to make the allocation problem non-trivial, 

we assume that g  induces a positive net ex-ante expected surplus such that 

(1)   [ ( ( ), )] [ ( )] 0i i i i
i N i N

E v g E U  
 

   . 

With the assumption of (1), without loss of generality, we can confine our attention to 

payment rules x X  that, along with the efficient allocation rule g , satisfy ex-ante 

individual rationality in the sense that for every Ni , 

   [ ( ( ), ) ( )] [ ( )]i i i i iE v g x E U     . 

The following requirement, namely IIR, implies that the mechanism incentivizes 

each player not to exit from the allocation problem at the interim stage after observing 
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his type. 

 

Interim Individual Rationality (IIR): A mechanism ( , )g x  and a profile of outside 

opportunity functions NU  satisfy IIR if for every Ni  and i i  , 

   [ ( ( ), ) ( ) | ] ( )i i i i i iE v g x U      . 

 

 Let us denote by ( )NX U X  the set of all payment rules x X  such that 

( , )g x  and NU  satisfy IIR. Let us denote by 0( )NU R   the maximum revenue 

defined by 

   0
( )

( ) max [ ( )]
N

N i
x X U

i N

U E x 




  . 

From the above observations, it is clear that there exists ( , ) ( )Nx r y X U   such that 

the central planner’s revenue as the sum of participation fees is equal to the maximal 

revenue: 

0( )i N
i N

r U


 , that is, 0( ) ( )i N
i N

x U 


  for all   . 

 

Proposition 2: It holds that 

(2)   0( ) ( 1) [ ( ( ), )]N i i
i N

U n E v g  


     

   max{ ( ) [ ( ( ), ) | ]}
i i

i i j j i
i N j N

U E v g


   


 

   . 

 

Proof: Let us consider an arbitrary payment rule ( )Nx X U , where for every i N  

and i i  , 

   [ ( ( )), ) ( ) | ]i i i iE v g x     

   
\{ }

[ ( ( ), ) ( ( ), ) ( ) | ]i j j j i i i
j N i

E v g v g h     


    

    [ ( ( ), ) | ] [ ( )]j j i i i
j N

E v g E h   


  . 

The inequalities in IIR are equivalent to the inequalities given by 
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   [ ( )] max{ ( ) [ ( ( ), ) | ]}
i i

i i i i j j i
j N

E h U E v g


     


    . 

Hence, 

   
\{ }

[ ( ) | ] [ ( ( ), ) | ]i i j j i
j N i

E x E v g    


    

   max{ ( ) [ ( ( ), ) | ]}
i i

i i j j i
j N

U E v g


   




    for all i i  , 

that is, 

   
\{ }

[ ( )] [ ( ( ), )]i j j
j N i

E x E v g  


    

   max{ ( ) [ ( ( ), ) | ]}
i i

i i j j i
j N

U E v g


   




   . 

This implies that 

   [ ( )] ( 1) [ ( ( ), )]i i i
i N i N

E x n E v g  
 

     

   max{ ( ) [ ( ( ), ) | ]}
i i

i i j j i
i N j N

U E v g


   


 

   . 

Hence, 

   0( ) ( 1) [ ( ( ), )]N i i
i N

U n E v g  


     

   max{ ( ) [ ( ( ), ) | ]}
i i

i i j j i
i N j N

U E v g


   


 

   . 

For every i N , let us specify x  in a manner that for every  , 

  
\{ }

( ) ( ( ), )i j j
j N i

x v g  


    

  max{ ( ) [ ( ( ), ) | ]} ( )
i i

i i j j i i i
j N

U E v g h


    


   . 

Clearly, the specified x  satisfies IIR, and 

   [ ( )] ( 1) [ ( ( ), )]i i i
i N i N

E x n E v g  
 

   
 

   
max{ ( ) [ ( ( ), ) | ]}

i i
i i j j i

i N j N

U E v g


   


 

   , 

which implies (2).
 

Q.E.D. 
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 Provided that a payment rule ( , ) ( )Nx r y X U   induces the maximal revenue, 

that is, 0 ( )i N
i N

r U


 , let us denote ( )i NU R   as the corresponding ex-ante 

expected payoff for each player i N : 

(3)    ( ) [ ( ( ), )] max{ ( ) [ ( ( ), ) | ]}
i i

i N i i i i j j i
i N j N

U E v g U E v g


      


 

    . 
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3. Combinatorial Allocations 

 

 Let us consider a combinatorial allocation problem, where the players and the 

central planner possess their respective initial endowments and trade these commodities 

simultaneously. There exist L  heterogeneous commodities. We define an allocation as 

a profile of packages ( )i i Na a  , where for every i N , 

   ia L , and i ja a   for all \ { }j N i , 

and ia L  denotes the package assigned to player i . Let ( ) ( ( ))i i Ng g A    . We 

assume that the valuation ( , )i iv a   depends just on ( , )i ia  ; we will write ( , )i i iv a   

instead of ( , )i iv a  . 

 Let ie L  denote the initial endowment for each player i N , where 

   i je e   for all \ { }j N i . 

The profile of initial endowments is regarded as an allocation ( )i i Ne e A  . Let 

0 \ i
i N

e L e


   denote the initial endowment of the central planner. We assume that the 

central planner has zero valuation for any package. We assume that each player can 

consume his initial endowment by himself whenever he exits from the allocation 

problem: 

(4)   ( ) ( , )i i i i iU v e   for all i N  and all i i  . 

 For every subset of players, that is, every coalition S N , we define ( )A S A  

as the set of all allocations a A  such that 

   i ia e  for all \i N S . 

Let us specify a function ( ) : ( )S S
i i S Sg g A S    as the allocation rule that is 

efficient for the coalition S N  in that for every S S  , 

   
( )

( ( ), ) max ( , )S
i i S i i i i

a A S
i S i S

v g v a  


 

  , 

where S i
i S

    and ( )S i i S S    . 
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Proposition 3: It holds that 

   \{ }
0

\{ }

( ) ( 1) [ ( ( ), )] [ ( ( ), )]N i
N i i i j j i j

i N i N j N i

U n E v g E v g    
  

      . 

and for each i N , 

   \{ }

\{ }

( ) [ ( ( ), )] [ ( ( ), )]N i
i N j j j j j i j

j N j N i

U E v g E v g    
 

   . 

 

Proof: From the definition of \{ }N ig  and (4), it follows that for every i i  , 

 
  

( ) [ ( ( ), ) | ]i i j j j i
j N

U E v g   


 
 

   
({ })

\{ }

( , ) [ ( , ) max ( , ) | ]i i i i i i j j j i
a A i

i N i

v e E v e v a   




   
 

   

\{ }

\{ }

[ ( ( ), ) | ]N i
j j i j i

j N i

E v g   


   , 

which, along with (2) and (3), implies the proposition. 

Q.E.D. 

 

 We define the coalitional game : 2 \{ }N R    as assigning to each coalition 

2 \{ }NS   the maximal ex-ante expected surplus for the coalition S , that is, 

   ( ) [ ( ( ), )]S
j S j

j S

S E v g  


   for all 2 \{ }NS  . 

Note that 

( ) [ ( ( ), )]j j
j N

N E v g  


  . 

It is clear from Proposition 3 that 

(5)  0( ) ( 1) ( ) ( \ { })N
i N

U n N N i  


    , 

and for every i N , 

(6)    ( ) ( ) ( \{ })i NU N N i    . 

 For every i N , a type *
i i   is said to be an opt-out type if 

    *( , )i i i ig e    for all i i  . 

When player i  has the opt-out type, the consumption of his initial endowment ie  by 
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himself is valuable to the point that the efficient allocation rule g  assigns it to him 

irrespective of the other players’ types. The notion of the opt-out type was introduced by 

Makowski and Ostroy (1989). See also Segal and Whinston (2010). The assumption of 

the presence of opt-out types excludes near-equal share ownerships investigated by 

Cramton, Gibbons, and Klemperer (1987), which guarantees the non-negativity of 

revenue in bilateral trades. 

Whenever there is an opt-out type in the set of possible types i  for each player 

i , we can then replace Proposition 3 with the following characterization result. 

  

Theorem 4: Whenever there exists an opt-out type *
i i   for each player i N , 

then 

(7)    0( ) ( 1) ( ) ( \ { })N
i N

U n N N i  


    , 

and for every i N , 

(8)    ( ) ( ) ( \{ })i NU N N i    . 

 

Proof: From the definition of opt-out type *
i i  , 

    * \{ }[ ( ( ), ) | ] [ ( ( ), )]N i
j j j i j j i j

j N j N

E v g E v g    
 

  . 

Hence, in the same manner as the proof of Proposition 3, 

max{ ( ) [ ( ( ), ) | ]}
i i

i i j j j i
j N

U E v g


   




   

* *( ) [ ( ( ), ) | ]i i j j j i
j N

U E v g   


    

\{ }

\{ }

[ ( ( ), )]N i
j j i j

j N i

E v g  


   . 

This, along with (2) and (3), implies that 

    \{ }
0

\{ }

( ) ( 1) [ ( ( ), )] [ ( ( ), )]N i
N i i i j j i j

i N i N j N i

U n E v g E v g    
  

      . 

and for every i N , 

    \{ }

\{ }

( ) [ ( ( ), )] [ ( ( ), )]N i
i N i i i j j i j

i N j N i

U E v g E v g    
 

   . 
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These equalities, along with the definition of the coalitional game, imply (7) and (8) 

Q.E.D. 

 

 We introduce the first collective decision procedure as follows. The central planner 

designs an efficient mechanism with BIC at the ex-ante stage, and at the interim stage, 

after observing his type, each player has the option to participate in or exit from the 

procedure. In order to incentivize each player to participate, the mechanism requires IIR. 

The equality (7) in Theorem 4 implies that with the presence of opt-out types, the 

central planner has a deficit in revenue if and only if 

( 1) ( ) ( \{ })
i N

n N N i 


  . 
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4. Marginal Stability 

 

This section introduces the second collective decision procedure as follows. At the 

ex-ante stage, each player i  pays the participation fee ir  to the central planner. Each 

player commits himself not to exit from the procedure even after observing his type. 

The players then design the efficient mechanism ( , )g y X  with BIC and with 

balanced budgets in the sense that 

  ( ) 0i
i N

y 


  for all  . 

Due to their commitment, the mechanism does not require IIR. From (1), without loss of 

generality, we can assume that ( , ( , ))g r y  satisfies ex-ante individual rationality and 

positive revenue. 

We assume that at the ex-ante stage, before the players design the mechanism 

( , )g y , any size-( 1n ) coalition has the option to exclude the player who does not 

belong to this coalition from the allocation problem and occupy the entire set of 

commodities up for sale, including the central planner’s endowment, except the 

excluded player’s initial endowment. We require the mechanism to incentivize any 

size-( 1n ) coalition to never exercise this option, that is, to satisfy MS in the following 

sense. 

 

Marginal Stability (MS): A mechanism ( , )g y  satisfies MS if for every i N , 

(9)   
\{ }

[ { ( ( ), ) ( )}] ( \{ })j j j j
j N i

E v g y N i   


  , 

where 

   \{ }

\{ }

( \{ }) [ ( ( ), )]N i
j j j

j N i

N i E v g  


  . 

 

Proposition 5: There exist ( , )r y X , such that ( , ( , ))g r y  satisfies MS if and only if 

(10)   ( 1) ( ) ( \{ })
i N

n N N i 


  . 

 

Proof: From the definition of ( )N  and the balanced budgets of y , 
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\{ }

[ { ( ( ), ) ( )}] ( 1) ( )j j j j
i N j N i

E v g y n N   
 

    , 

which along with (9), implies (10). 

 Suppose that (10) holds. Then, clearly, there exists ( ) n
i i N R      satisfying that 

(11)   
\{ }

( \{ })j
j N i

N i 


   for all i N . 

Let us specify ( ) n
i i N R     by 

   

( ) j
j N

i i

N

n

 
  


 

 
  for all i N . 

Note that 

   ( )i
i N

N 


 . 

From (10) and (11), 

( ) 0j
j N

N 


   , 

and therefore, 

(12)   i i    for all i N . 

Since ( )i
i N

N 


 , there exists a budget-balanced payment rule y X , such that 

   [ ( ( ), ) ( )]i i i i iE v g y     , 

which, along with (10), (11), and (12), implies (9) for all i N . Hence, ( , ( , ))g r y  is 

marginally stable. 

Q.E.D. 

 

The following theorem shows that whenever there is an opt-out type for each player, 

then the existence of a marginally stable mechanism is equivalent to the central 

planner’s deficit in maximal revenue. 

 

Theorem 6: If 0( ) 0NU  , then there exists a mechanism that satisfies efficiency, BIC, 

and MS. Whenever there is an opt-out type for each player, then there exists a 

mechanism that satisfies efficiency, BIC, and MS if and only if 0( ) 0NU  . 
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Proof: From (5), it is evident that 0( ) 0NU   implies (10). From (7), it is evident 

that on the assumption that there is an opt-out type for each player, 0( ) 0NU   is 

equivalent to (10). This observation, in conjunction with Proposition 5, implies this 

theorem. 

Q.E.D. 

 

 From Theorem 4, in the first collective procedure, it is inevitable for the central 

planner to have a deficit in revenue if and only if inequality (10) holds. From Theorem 6, 

in the second collective procedure, the central planner can earn a positive revenue if and 

only if inequality (10) holds. Hence, we can conclude that the first collective decision 

procedure fails to make the achievement of efficiency compatible with the central 

planner’s non-negative revenue if and only if the second collective decision procedure 

succeeds to do the same. 
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5. Discussion: Standard Stability 

 

The success of the second collective decision procedure might be in doubt if the 

players are permitted to have the option to build a coalition of any size. A mechanism 

( , )g y  is said to satisfy standard stability (SS) if for every non-empty coalition 

S N , 

(11)   [ { ( ( ), ) ( )}] ( )i i i i
i S

E v g y S   


  . 

 Following Milgrom (2004, Chapter 8), for instance, whenever the commodities are 

substitutes, then any Groves mechanism, which generally satisfies MS, automatically 

satisfies SS. However, whenever the commodities are not necessarily substitute, then, SS is 

generally more restrictive than MS. Hence, by replacing MS with SS, it might be the case 

that both of the first and second collective decision procedures fail to achieve efficiency in a 

consistent manner with the central planner’s non-negative revenue. 

 Let us consider the combinatorial allocation problem, in which the underlying 

coalitional game has a symmetric structure in a manner that for every S N  and every 

S N  , 

   ( ) ( )S S      if S S . 

With this symmetry, we will write ( )l  instead of ( )S , where l S . In the same 

manner as Proposition 5, it follows that there exists ( , )r y X  such that ( , ( , ))g r y  

satisfies SS if and only if for every {1,..., 1}l n  , 

    ( ) ( )l n n l  , 

where we design ( , )r y  so that it induces the same ex-ante expected payoff across 

players. 

Suppose that 

   ( 1) ( ) ( 1)n n n n    , 

while there exists {1,..., 2}l n   such that 

( ) ( )l n n l  . 

Then, from Theorem 5 and the above-mentioned observations, the first and second collective 

decision procedures both fail to make the achievement of efficiency consistent with the 
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central planner’s non-negative revenue. 

 In order to overcome this difficulty, the central planner should change the commodities 

brought by him in a manner that crucially depends on which procedure between the first and 

second collective decision procedures to follow. 

In the first collective procedure, the central planner should change the commodities 

brought by him in order to make the coalitional game satisfy 

  ( 1) ( ) ( 1)n n n n    . 

In this case, the central planner should bring more commodities that are valuable to the 

players compared to their initial endowments. By doing this, the central planner can reduce 

the bargaining rents of the players, thereby increasing his revenue. 

In the second collective procedure, the central planner should change the commodities 

brought by him in order to make the coalitional game satisfy 

  ( ) ( )l n n l  . 

In this case, the central planner should refrain from bringing commodities that are valuable to 

the players. By doing this, the central planner can enhance the bargaining rents of the players, 

thereby making the collective decision more stable. 
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6. Conclusion 

 

 This paper investigated the combinatorial allocation problem with incomplete 

information, where both the central planner and the players brought commodities to sell 

simultaneously. The central planner attempted to achieve efficiency in the incentive 

compatible manner, without having a deficit in revenue. 

We introduced two distinct collective decision procedures. The first procedure 

assumed that the central planner had the initiative in designing a mechanism, and each 

player had the option to exit from the procedure after observing his type. This procedure 

required interim individual rationality. In contrast, the second procedure assumed that 

the central planner transferred the initiative of mechanism design to the players, who 

have to commit themselves to participate in the procedure. This procedure required 

stability against blocking behavior by the largest proper coalitions, that is, MS. 

 With the presence of opt-out types, we showed the characterization result that the 

central planner could earn non-negative revenue in the first procedure if and only if he 

failed in the second procedure. In the first collective decision procedure, the central 

planner should bring more commodities to sell. In the second collective decision 

procedure, the central planner should refrain from bringing commodities to sell. 
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Appendix: Proof of Lemma 1 

 

From payoff equivalence, without loss of generality, we can assume ˆx X . 

According to Arrow (1979) and d’Aspremont and Gérard-Varet (1979), it is evident that 

there exists x X  such that ( , )g x  satisfies BIC and the balanced budgets in the 

sense that 

   ( ) 0i
i N

x 


   for all  . 

From payoff equivalence, it is evident that there exists ( ) n
i i Nb R   such that 

   [ ( ) | ] [ ( ) | ]i i i i iE x E x b      for all i N  and all i i  , 

where note that 

   [ ( )]i
i N

i
i N

E xb 
 

   . 

We specify x X  by 

   ( ) ( )i i ix x b    for all i N  and all  . 

From this specification, it is clear that ( , )g x  satisfies BIC, 

   [ ( ) |[ ) | ] ](i i i i iE xE x b      

[ ( ) | ]i iE x     for all i N  and i i  , 

and 

   ( ) ( ) [ ( )]i i i i
i N i N i N i N

x x b E x  
   

        for all  . 

 

 

 


