Incentives in Hedge Funds

Hitoshi Matsushima

Faculty of Economics, University of Tokyo

February 4, 2010
Hedge Fund as Delegated Portfolio Management

Investor (Unsophisticated) 1 Unit of Fund, No Withdrawal

Manager

- M Units of Personal Fund: Manage Investor’s and Personal Funds
- ‘Separate Management’ or ‘Equity Stake’
- Weak Regulation, Low Transparency
- Generate Alpha

Manager

\[
\begin{align*}
\text{Skilled Type} & : \text{Select Alpha (Action) } a \in [0, \infty) \text{ with Non-Pecuniary Cost } C(a) \\
\text{Unskilled Type} & : \text{Alpha 0}
\end{align*}
\]
Incentive Problem

Hidden Type: Investor Cannot Identify whether Manager is skilled or not
 Hidden Activity: Investor Cannot Observe Manager’s Activity

Q: Can We Solve Incentive Problem?

A: Yes, but We Need Capital Gain Tax!

HF Survives:
Positive Capital Gain Tax (Fulcrum Scheme or Equity Stake)

Skilled Entry
Unskilled Exit
Skilled and Investor
Pareto Improvement
No HF
No CG Tax
Investor Entry
Unskilled

A: Yes, but We Need Capital Gain Tax!
Manager’s Incentive Fee Scheme

\[y : [0, \infty) \to [-M, \infty], \quad y(x) \in [-M, \infty) \]

Return-Contingency, Penalty, Escrow for Solvency
Real Fee Scheme

‘2:20’ Scheme
Asymmetry, No Penalty, Convexity, High-Powered

\[y(x) = 0.2x + 0.02 \]

Criticisms (Warren Buffet): ‘2:20’ Makes Manager More Risk-Taking by Side Contracting with Third Party. We Should Change ‘2:20’ Scheme to

‘Fulcrum’ Scheme
Symmetric, Positive Penalty, Linear, Low-Powered

\[y(x) = k(x - 1) \]
Side Contracting: Performance Mimicry

Randomize Return

Cumulative Distribution \(F : [0, \infty) \rightarrow [0, 1] \)

\[E[z \mid F] = x \]
Example (Lo (2001))

Capital Decimation Partners (CDP)

Unskilled Can Generate Alpha \(\frac{p}{1-p} > 0 \) with Prob. \(1 - p \)

Diagram:

- **Unskilled Manager**
 - Safe Asset 1 Unit (HF)
 - Safe Asset \(p \) Unit
 - Safe Asset \(p^2 \) Unit

- **Escrow**
- **Arbitrageur**

Covered Option Sale:
Transfer Safe Asset to Arbitrageur if S&P500 Index Decline 20% (Prob. \(p \))

- Price \(p \)
- Price \(p^2 \)
- Price \(p^3 \)
Previous Works: Hedge Fund Never Survives

Foster + Young (08/09) With No CG Tax, No Scheme Can Solve Incentive Problem

Media: FT (18/3/08), NYT (3/8/08)

“HF Never Survives. We Need More Transparency!”
Results of This Paper

- CG Tax Functions
 - With No CG Tax, We Cannot Solve Incentive Problem (a la Foster + Young)
 - With Positive CGT Rate $t > 0$, We Can Solve Incentive Problem

- Constrained Optimal Scheme
 - Fulcrum After Taxation: Low-Powered

- Income Tax on Fee Functions
 - Income Tax Rate Should be Greater than CG Tax Rate, $\tau > t$
 - Manager Selects Constrained Optimal Scheme Voluntarily

- Equity Stake Functions
 - We Can Solve Incentive Problem without Fulcrum
Assumption: Separate Management

Skilled Manager

- **HF Return**: $a + 1$
- **Personal Fund**: $M - w(y)$
- **Escrow**: $w(y)$
- **Action**: a
- **Cost**: $c(a)$
- **Side Contract**: F
- **Random Return**: z
- **Return**: $(M - w(y))(a' + 1)$

Unskilled Manager

- **HF Return**: 1
- **Personal Fund**: $M - w(y)$
- **Escrow**: $w(y)$
- **Action**: $a = 0$
- **Action**: $a' = 0$
- **Side Contract**: F
- **Random Return**: z
- **Return**: $w(y)$
- **Alpha**: 0
Incentive Problem: Five Constraints

① Skilled Entry
② Unskilled Exit
③ Investor Entry
④ Welfare Improvement
⑤ Skilled Non-mimicry: Skilled Needs No Third-Party Side Contract
Skilled Entry: $V(y, t, \tau) \geq \overline{V}(t)$

Outside Opportunity
Manage Entire Personal Fund M

Payoff
$\overline{V}(t) \equiv M\{(1-t)\overline{a}(1-t) - c(\overline{a}(1-t))\}$

CG Tax $tM\overline{a}(1-t)$

HF Industry
Put $w(y)$ in Escrow, Unmanageable

Payoff
$V(y, \tau, t) \equiv \min[(1-\tau)\overline{y}(a^*(y, \tau) + 1), \overline{y}(a^*(y, \tau) + 1) - c(a^*(y, \tau))]$

$+\{M - w(y)\}\{(1-t)\overline{a}(1-t) - c(\overline{a}(1-t))\}$

CG Tax $t\{M - w(y)\}\overline{a}(1-t)$

Income Tax $\max[\tau, \overline{y}(a^*(y, \tau) + 1), 0]$

$\overline{a}(1-t)$ Maximize $(1-t)a - c(a)$

$a^*(y, \tau)$ Maximize $(1-\tau)y(a + 1) - c(a)$
Unskilled Exit: \(\max_{F \in \Phi} E[\min[(1 - \tau)y(z), y(z)] | F] \leq 0 \)

HF Industry
No Skill but Side Contracting

Payoff
\(\max_{F \in \Phi} E[\min[(1 - \tau)y(z), y(z)] | F] \)

CG Tax 0
Income Tax \(E[\max[\tau y(z), 0]] | F] \)
Investor Entry: $U(y,t,\tau) \geq 0$, i.e., $a^*(y,\tau) \geq y(a^*(y,\tau) + 1)$

HF Industry

Payoff

$U(y,t,\tau) \equiv \min\{(1-t)\{a^*(y,\tau) - y(a^*(y,\tau) + 1)\},
\quad a^*(y,\tau) - y(a^*(y,\tau) + 1)\}$

CG Tax $\max\{t\{a^*(y,\tau) - y(a^*(y,\tau) + 1)\}, 0\}$
Welfare Improvement: $S(y,t,\tau) > \bar{S}$

No HF (Status Quo)

\[t = \tau = 0 \]

Surplus
\[\bar{S} \equiv M\{\bar{a}(1) - c(\bar{a}(1))\} \]

Surplus Increases

HF Industry

Surplus
\[S(y,t,\tau) \equiv a^*(y,\tau) - c(a^*(y,\tau)) + \{M - w(y)\}\{\bar{a}(1) - t) - c(\bar{a}(1 - t))\} \]
No Capital Gain Tax: Impossibility

Theorem: Suppose CGT Rate $t = 0$. Then, There Exists No Fee Scheme that Satisfies Skilled Entry, Unskilled Exit, and Welfare Improvement.

Outline of Proof: Assume $a > 0$ is only available, $y(0) = -w(y)$

Skilled
- Alpha a
- $y(a + 1) - C(a)$
- $-w(y)(a - c(a))$

Skilled Entry
- $y(a + 1) \geq w(y)a + \{1 - w(y)\}c(a)$
- $> w(y)a$
- **Contradiction!**

Unskilled (CDP)
- Alpha a Pro. $\frac{1}{a + 1}$
- $y(a + 1)$

Unskilled Exit
- $\frac{1}{a + 1}y(a + 1) \leq \frac{a}{a + 1}w(y)$

Skilled
- Alpha a Pro. $\frac{a}{a + 1}$
- $y(0)$

- Put $w(y)$ in Escrow
- $-w(y)(a - c(a))$

- Skilled Entry
- $y(a + 1) \geq w(y)a + \{1 - w(y)\}c(a)$
- $> w(y)a$
- **Contradiction!**
Positive Capital Gain Tax: Possibility

Theorem: There exist Tax Rates \((t, \tau) \in [0,1]^2\) and Fee Scheme \(y \in Y^*(\tau)\) that satisfy All Constraints.

Outline of Proof: Assume \(a > 0\) is only available

- Skilled’s Outside Opportunity
 - Manage Entire Personal Fund
 - Pay CG Tax \(tMa\)

- Skilled’s HF
 - Put \(w(y)\) in Escrow
 - Pay CG Tax \(t\{M - w(y)\}a\)

- Save CG Tax \(tw(y)a\)

“Larger Fund + Less Active” is Better Than “Smaller Fund + More Active”
Constrained Optimization: \((y^*, t^*, \tau^*)\)

(1) **Fulcrum Scheme after Taxation**

\[
y(x) = x - 1 \quad \text{for all} \quad x \in [1, \infty)
\]

\[
y(x) = (1 - \tau)(x - 1) \quad \text{for all} \quad x \in [0, 1)
\]

(2) **Skilled Entry Binding**

\[
V(y, t, \tau) = \bar{V}(t)
\]

We Specify \((y, t, \tau) = (y^*, t^*, \tau^*)\) As Maximizing Surplus \(S(y, t, \tau)\) Subject to (1) and (2)

Theorem: \((y^*, t^*, \tau^*)\) Satisfies All Constraints. There exists No \((y, t, \tau)\) that Satisfies All Constraints and \(S(y, t, \tau) > S(y^*, t^*, \tau^*)\).
Constrained Optimization: Properties

- Manager is Willing to Select y^* Voluntarily: y^* is the Only Scheme that Satisfies Skilled Entry, Unskilled Exit, Investor Entry, and Skilled Non-mimicry.

- Manager Prefers to Put Personal Fund in Escrow as Large as Possible, Distorting Welfare.

- Income Tax Rate τ^* is Greater than CG Tax Rate t^*: High Income Tax Rate
Another Assumption: Equity Stake

Skilled Manager

Unskilled Manager
We Don’t Need Penalty, But CG Tax and Big Stake

Theorem: Suppose CGT Rate $t = 0$. Then, There Exists No Fee Scheme that Satisfies Skilled Entry, Unskilled Exit, and Welfare Improvement.

Additional Assumption: $a > 0$ is only available, $\tau = 0$

Theorem: For Sufficiently Large Personal Fund M, There exist (t, y) that Levy No Penalty but Satisfy All Constraints.

Outline of Proof: CDP Must be Covered by Not only Investor’s Fund But also Personal Fund

<table>
<thead>
<tr>
<th>Equity Stake M (Sufficiently Large)</th>
<th>Unskilled’s CDP Covered by Equity Stake</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return $M(a + 1)$</td>
<td>CG Tax tMa</td>
</tr>
<tr>
<td>(Prob. $\frac{1}{a+1}$)</td>
<td>(Prob. $\frac{a}{a+1}$)</td>
</tr>
</tbody>
</table>

Expected Return $M - tMa < M$
Further Comments

Investor’s Optimization

- Investor Prefers **higher**-Powered and **More** Penalty than Constrained Optimal Scheme.

- By Transferring Total Tax Revenue to Investor, Government Can Incentivize Investor to Select Constrained Optimal Scheme Voluntarily.

- Investor’s Payoff May be **Greater** than Manager’s Payoff per Unit: Manager May Fold HF Business.

Entry Cost

Entry Cost Functions, if, and Only if, It is **Non-Pecuniary**!